My Medicine Notes

Table of Contents

Aesthetics

Botox/Xeomin Injections (botulinum toxin type A)

Good article: Botulinum toxin in facial plastic surgery

General Techniques:

  • Inject while retracting
  • Patient in a 60 degree recline
  • Touch up 2 weeks later if needed
  • Use white eyeliner to mark safety zones
  • Compress injection sites firmly away into safety zone
  • Wipe area with EtOH swab
  • Inject with muscles contracted (Frown and Forehead)

Reconstitution

Table 1: Dilution for 2 units per 0.1 mL
  50 unit vial 100 unit vial 200 unit vial
0.9% NaCl* 2.5 mL 5 mL 10 mL

*Preservative Free

Reconstitution and Dilution - Flip It. Don't Shake It.

  • Prior to injection, reconstitute each vial of XEOMIN with sterile, preservative-free 0.9% Sodium Chloride Injection
  • A 20 to 27-gauge short-bevel needle is recommended for reconstitution
  • Draw up an appropriate amount of preservative-free 0.9% Sodium Chloride Injection, USP into a syringe

Steps:

  1. Step 1: Vial preparation
    • Clean the exposed portion of the rubber stopper of the vial with alcohol (70%) prior to insertion of the needle.1
  2. Step 2: Saline injection
    • After vertical insertion of the needle through the rubber stopper, the vacuum will draw the saline into the vial. Gently inject any remaining saline into the vial to avoid foam formation. If the vacuum does not pull the saline into the vial, then XEOMIN must be discarded.1
  3. Step 3: Mixing
    • Remove the syringe from the vial and mix XEOMIN with the saline by carefully swirling and inverting/flipping the vial—do not shake vigorously.1

Frown Lines

Injection sites:

  1. 1 cm above eyebrow (orbital rim) at the medial edge of eye line (medial Canthus) (Corrugator muscle)
    • 2 - 4 u each side
  2. 1 cm above eyebrow (orbital rim) on the medial edge of the iris line (Limbus) (Corrugator muscle)
    • 2 u each side
  3. Standing in front of patient, inject into Procerus muscle
    • Imagine an X from medial canthus to Corrugator injection (#1)
    • 4 u (2.5 - 5 u)

Total dose:

  • Women: 20 units
  • Men: 25 units

Reference:

Forehead Lines

General Injection Strategy:

  1. Superior half to third of forehead inject 2 units symmetrically in ridges (not valleys) (Frontalis muscle)
  2. Consider 4 sites in horizontal line
    • 2 units each (8 total)
  3. If needed add another line in a ridge consisting of 2- 3 sites in spaces between previous injections
    • Might look best if in a V shape
    • 2 units each (4 to 6 units)
  4. Approach with 30 degree angle

Total dose:

  • Women: 15 - 20 units
  • Men: 20 - 25 units

Botox Aftercare Instructions

Aftercare instructions:

  • No physical exercise (24 hours)
  • Avoid heat exposure (24 hours)
  • Avoid alcohol and painkillers
  • Don’t wear anything on the treatment area
  • No laying down after your Botox treatment (4 hours); Also, avoid sleeping on your face for at least 1 night
  • No touching your face or massaging the treatment area

Injection Plan:

  • Use 8 units Glabellar
    • 4 u Precerus
    • 2 u Bilat Corrugator
  • Use 12 units Forehead
    • 1 line of 4 sites
    • 1 line of 2 sites (if needed) . . . . . .

Botox FAQ

How long is BOTOX good for after reconstitution?

Ideally you will want to use the reconstituted vial of botulinum toxin within 3 weeks, however it can last up to eight weeks when stored properly in the fridge (Hexcel et al 2003). What is the standard dilution for BOTOX?

The recommended dose is 100 Units of BOTOX, and is the maximum recommended dose. The recommended dilution is 100 Units/10 mL with preservative-free 0.9% Sodium Chloride Injection, USP (see Table 1).

Does BOTOX require reconstitution?

BOTOX® Cosmetic dilution and reconstitution processes are the same for moderate to severe forehead lines, lateral canthal lines, and glabellar lines. Note: once open and reconstituted, use within 24 hours, because product and diluent do not contain a preservative. How do you store BOTOX after reconstitution?

BOTOX should be administered within 24 hours after reconstitution. During this time period, reconstituted BOTOX should be stored in a refrigerator (2° to 8°C).

What is Botox reconstitution?

Allergan advocates 100 U of BOTOX® diluted in 2 cc of preservative-free normal saline, which results in a concentration of 5 U/per 0.1 mL. Reconstitution is performed using a vial of BOTOX®, which must remain upright. A 21-gauge, 2-inch needle is attached to a 5 mm syringe.

Reference:

Allergy/Immunology

Allergic Rhinitis

Allergic rhinitis

  • An immunoglobulin E–mediated process

Preventions that don't work

  • High-efficiency particulate air (HEPA) filters are not effective at decreasing allergy symptoms.
  • Dust mite–proof mattress covers do not prevent allergic rhinitis in children two years and younger.

History

  • Whether the symptoms are seasonal or perennial
  • Symptom triggers
  • Severity

Common examination findings

  • Clear rhinorrhea
  • Pale nasal mucosa
  • Swollen nasal turbinates
  • Watery eye discharge
  • Conjunctival swelling
  • Allergic shiners

Testing:

  • Serum or skin testing for specific allergens should be performed when there is inadequate response to empiric treatment, if diagnosis is uncertain, or to guide initiation or titration of therapy.
  • If allergy testing is performed, trigger-directed immunotherapy can be effectively delivered subcutaneously or sublingually

Treatment

  • Intranasal corticosteroids are first-line treatment for allergic rhinitis.
  • Second-line therapies include antihistamines and leukotriene receptor antagonists and neither shows superiority.

Approximately 1 in 10 patients with allergic rhinitis will develop asthma.

Reference:

  • Am Fam Physician. 2023;107(5):466-473

Anaphylaxis

USE epinephrine!

  • Corticosteroids and diphenhydramine help stave off rebound anaphylaxis

Eosinophilic Esophagitis

  • Empiric 6 food elimination diet (SFED) resolves inflammation in 66% of patients
    • Milk, Wheat, Soy, Eggs, Treenuts/peanuts, and fish/shellfish
  • Food elimination based on allergy testing resolves esophageal inflammatiton in 50% of patients
    • Often (69%), patients are able to identify a single food trigger
  • Medication options for eosinophilic esophagitis include
    • Topical steroids delivered via an asthma inhaler and then swallowed
    • PPI
  • Dysphagia with eosinophilic esophagitis is often secondary to esophageal strictures, which can be treated with endoscopic dilation

Causes:

  • Dairy: 50%
  • Wheat: 31%
  • Soy
  • Egg: 36%
  • Nuts
  • Fish/Shellfish

References:

  • AFP Vol 103 No 9 May 2021
  • Zalewski A, Doerfler B, Krause A, Hirano I, Gonsalves N. Long Term Outcomes of the Six Food Elimination Diet and Food Reintroduction in a Large Cohort of Adults with Eosinophilic Esophagitis. Am J Gastroenterol. 2022 Aug 12. doi: 10.14309/ajg.0000000000001949. Epub ahead of print. PMID: 35971213.

There are quite a few studies on a 4-6 food elimination diet to help with food allergies and sensitivities.

This is the process:

  1. Take the top 6 most common food allergens out of your diet for 6 weeks (milk products, eggs, wheat, soy, peanut/tree nuts, and fish/shellfish).
  2. At 6 weeks into the diet, review your symptoms.
  3. Bring the foods back into your diet, one at a time, for a 2 week trial each. See if you have any symptoms from them - if so, avoid their use.

Food Allergies

Nine foods are responsible for the majority of allergic reactions:

  • Cow’s milk
  • Eggs
  • Fish
  • Peanuts
  • Sesame
  • Shellfish
  • Soy
  • Tree nuts
  • Wheat

Risk factors (OR):

  • Latex allergy (7.9)
  • Asthma (3.2)
  • Urticaria (2.9)
  • Insect venom allergy (2.50
  • Allergic rhinitis (2.3)
  • Atopic dermatitis (1.9)
  • Medication allergy (1.9)

Reduce risk:

  • Early introduction of peanuts, cow's milk, wheat, and cooked eggs between 4-6 mo decreases risk of developing food allergies
  • Early introduction of peanuts and cooked eggs at 4-6 mo is safe and effective for reducing risk of food allergy

Reference:

Seasonal Allergies

Allergy Medications

  • Antihistamines: These medications are commonly used to treat allergies such as allergic rhinitis or sometimes urticaria (hives).
  • Immunomodulator Medications: These medications act by directly changing the behavior of the immune system. These are also known as biological medications.
  • Leukotriene Modifiers: These medications are used for relief of allergic rhinitis symptoms.
  • Nasal Sprays and Sinus Medications: This table includes the various nasal sprays approved to treat allergic rhinitis and/or non-allergic rhinitis.
  • Devices: This includes information on devices that have been approved for use to treat or manage allergic rhinitis.
  • Eye Drops: This table lists the medications available to treat allergic conjunctivitis (allergic eye).
  • Allergic Emergency Medications: These are the medications used to treat anaphylaxis.
  • Topical Ointments & Creams: Here are the topical medications used to treat conditions such as atopic dermatitis and eczema.
  • Treatment of Hereditary Angioedema: Replacement therapy or immune modulating medicines pertaining to hereditary angioedema.
  • Oral Corticosteroids: These medications are sometimes used to treat severe allergies and can also be used as a rescue medication for asthma.
  • Sublingual Immunotherapy (SLIT) Allergy Tablets: Allergy tablets are another form of allergy immunotherapy therapy and involves administering the allergens under the tongue generally on a daily basis.

To manage allergy symptoms, these are the medications with the strongest evidence:

  • Flonase (fluticasone) spray (or similar like Nasocort) 2 sprays in each nostril daily. This takes at least a week of use before you will notice it working. To use, look down touching chin to chest, Spray into nose use other side arm (for example: left arm on right side)
  • There is one antihistamine nasal spray which will help symptoms very quickly: Astepro allergy (azelastine)
  • Also helpful are medications like: Allegra, Claritin, or Zyrtec. I find Allegra to be stronger than Claritin and Zyrtec. Use this every day when allergies are worse.
  • To manage excessive congestion, you can use Sudafed 30-60 mg every 4 hours as needed. This medication might keep you awake, so be cautious with use at night.

My recommended maximal allergy management would be:

  1. Flonase daily
  2. Allegra-D (generic is fine)
  3. Astepro allergy (OTC antihistamine nasal spray)

IgG vs IgM

IgM

  • IgM antibodies are produced by the body immediately after the exposure to a specific antigen
  • Mainly found in blood and lymph fluid
  • Quantity produced upon exposure to the antigen is nearly 6 times as much of IgG
  • IgM antibodies usually also have 10 binding sites (compared to only 2 in IgG)
    • Only about half of the binding sites can actually be used to bind IgM to an antigen
  • IgM is multivalent: Multiple monomers are bonded together
  • Temporary - disappear within 2 to 3 weeks following infection

IgG

  • IgG refers to an immunity for a particular disease
  • A late stage response as compared to IgM
  • Abundant in the body
  • Protects against various disease causing foreign agents
  • IgM antibodies are replaced by IgG antibodies that last for life time

Systemic reaction to insect sting

  1. Evaluate patients with skin testing
  2. If positive: treat with venom immunotherapy

Reference:

  • AFP Vol 106 No 6 Dec 2022

Mast Cell Activation Syndrome (MCAS)

[2024-06-19 Wed 11:53]

Symptoms The symptoms most consistent with anaphylaxis are:

  • Heart related symptoms: rapid pulse (tachycardia), low blood pressure (hypotension) and passing out (syncope).
  • Skin related symptoms: itching (pruritus), hives (urticaria), swelling (angioedema) and skin turning red (flushing).
  • Lung related symptoms: wheezing, shortness of breath and harsh noise when breathing (stridor) that occurs with throat swelling.
  • Gastrointestinal tract symptoms: diarrhea, nausea with vomiting and crampy abdominal pain.

Reference:

Diagnosis

Diagnostic criteria for mast cell activation syndrome According to the algorithm proposed by Valent et al,2,6 MCAS should be considered when the following 3 criteria are met:

1 Presence of typical and recurrent severe symptoms of excess MC activation (often diagnosed as anaphylaxis affecting at least 2 organs). The typical symptoms include urticaria, flushing, pruritus, wheezing, angioedema, nasal congestion, tachycardia, hypotension, and diarrhea. Headaches, memory loss, and impaired concentration may also be observed, although these symptoms are less specific.

2 Confirmed excess of MC activation in biochemical tests. The preferred marker is tryptase (elevated serum levels by 20% above the upper limit of the normal range or by at least 20% above baseline plus 2 ng/ml within 4 hours after a symptomatic period). Other metabolites include serum and urinary histamine and urine prostaglandin D2, leukotrienes C4 and E4, and 11β-prostaglandin F2α. Prostaglandin D2 in 24-hour urine collection is considered the most specific marker of excess MC activation, but its availability is highly limited.

3 Positive response to symptom treatment as in mastocytosis. By consensus, this criterion should be fulfilled by antihistamine agents; however, response to other drugs, such as leukotriene receptor blockers, systemic glucocorticoids, and sodium cromoglycate, may also be useful, although they are considered less specific and thus more efficient in other diseases than MCAS. The withdrawal of symptoms should be complete or at least major, as self-reported by patients.7

In the case of nonsevere, transient symptoms (criterion 1 not fulfilled) and positive criteria 2 and 3, systemic or local (if the range of skin symptoms is limited) mast cell activation (MCA) is diagnosed with a similar clinical approach to that in MCAS.2 In other cases, if the patient does not respond to standard MCAS treatment and requires repeated epinephrine administration, MCA might be diagnosed provided that typical symptoms (criterion 1) and elevated levels of MC-derived mediator (criterion 2) are present and the criteria for primary MCAS are met (see below).6

Once the diagnosis is confirmed, MCAS is classified according to an underlying cause. Primary MCAS involves monoclonal MC proliferation, similar to SM but not fulfilling its criteria. In this type of MCAS, CD25+ mastocytes, the KIT D816V mutation, or both are observed in bone marrow biopsy. The diagnosis of mastocytosis is superior to that of MCAS, which means that if at any point the criteria for mastocytosis are fulfilled, MCAS is no longer considered. Secondary MCAS is defined as MC activation due to comorbidities.8 The most typical cause is type 1 hypersensitivity according to the Gell and Coombs classification, which leads to persistent MC activation through allergen-specific IgE.9 Hymenoptera venom, food, and drug intolerance or allergies are currently discussed as the most important causes of secondary MCAS. Although receptors for IgE (FcεRI) are considered the strongest MC activator, many different receptors are present on cell surface.10 Bacterial components might activate MC directly with toll-like receptors 2, 3, 4, and 6 as well as fMLP receptor or through complement activation.11 Excess of hormones may also induce secondary MCAS through estrogen, progesterone, corticotropin-releasing hormone, and α-melanocyte–stimulating hormone receptors. The chronic use of certain drugs such as opioids, muscle relaxants, intravenous contrast media, or adenosine may also activate MCs. If the primary and secondary causes are excluded, idiopathic MCAS may be diagnosed.9

Importantly, some patients may be diagnosed with primary and secondary MCAS, as is the case in patients with mastocytosis and insect venom allergy (IVA) who require specific lifelong immunotherapy.12,13 It is recommended that these patients are provided with lifelong immunotherapy, in addition to antimediator treatment and an emergency kit including at least 2 epinephrine autoinjectors.14

Labs

The most important first-line examination in patients with suspected mastocytosis or primary MCAS is the measurement of tryptase levels in peripheral blood.19 In the absence of urticaria pigmentosa, the patient with the tryptase level below 15 ng/ml and no increase during the suspected reaction should be followed. The tryptase level above 25 ng/ml is an indication for bone marrow studies including histopathology, cytology, flow cytometry, and detection of the KIT mutation.19 Patients with the level between 15 and 25 ng/ml and a REMA score of 2 or higher or with the KIT D816V mutation detected in peripheral blood should also undergo bone marrow studies.18

The elevated tryptase level may be related to other comorbidities, including hematologic, nonhematologic reactive, and other disorders.2 Hematologic diseases include chronic leukemia (myeloid, eosinophilic, basophilic), acute basophilic or myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasm especially with mutated PDGFR or FGFR genes, and myelomastocytic leukemia.2,29 Nonhematologic reactive conditions with elevated tryptase levels are allergic disorders, mainly exacerbated chronic urticaria, chronic inflammatory diseases, and chronic helminth infection. Other conditions include end-stage kidney disease and hereditary alpha tryptasemia. Elevated tryptase level can be rarely found in healthy individuals or as a false positive result due to heterophilic antibodies.2 Additional mediators, such as histamine in plasma or urine, histamine metabolites in urine, or prostaglandin metabolites in 24-hour urine collection, may also be used as indicators of MCA.30 The positive result should be based on an event-related increase in at least 2 of these mediators or, preferably, at least 50% higher values after the reaction in comparison with the baseline value.2

Mast cells are known to produce many molecules that cause inflammation, but only a few mediators or their stable breakdown products (metabolites) have been found reliably elevated in episodes of MCAS and measurable in commercial laboratory tests. Increases in serum mast cell tryptase and in urine levels of N-methylhistamine, 11B -Prostaglandin F2α (11B-PGF2α) and/or Leukotriene E4 (LTE4) are the only useful tests in diagnosis of MCAS.

Total serum mast cell tryptase should be drawn between 30 minutes and two hours after the start of an episode, with baseline level obtained many days later. The urine tests are performed on a 24 hour collection of urine that is started immediately.

Since these are not standard laboratory tests, patients should work with their local allergist who can communicate with emergency and lab personnel to assure they are ordered and completed in a timely fashion.

Management

The aim of chronic treatment is to prevent symptoms by prophylactic use of antimediator drugs.5 The first-line choice is histamine receptor blockers 1 and 2. Patients with gastrointestinal symptoms may benefit from additional treatment with proton pump inhibitors. Some patients also benefit from administration of cromones, low-dose glucocorticoids, and, in the case of psychological disorders, antidepressants.5,48-50

The goals of treatment are both diagnosis and patient relief. The immediate goal is to provide relief for the patient. Lack of response to these treatments suggests that MCAS is not present.

The treatment of acute episodes should follow the recommendations for treatment of anaphylaxis, starting with epinephrine, if indicated by the severity of symptoms.

Antihistamines, such as the first generation histamine type 1 receptor blockers diphenhydramine and hydroxyzine, can be effective for itching, abdominal discomfort and flushing, but their use may be limited by side effects (sleepiness). Second generation antihistamines, including loratadine, cetirizine and fexofenadine, are preferable due to fewer side effects.

Treatment with histamine type 2 receptor blockers, such as ranitidine or famotidine, can be helpful for abdominal pain and nausea.

Aspirin blocks production of prostaglandin D2 and can reduce flushing.

Montelukast and zafirlukast block the effects of leukotriene C4 (LTC4) and zileuton blocks LTC4 production, so these reduce wheezing and abdominal cramping.

Corticosteroids are helpful for edema, hives and wheezing but should only be used as a last resort.

Omalizumab (which blocks binding of IgE to its receptors) has been reported to reduce mast cell reactivity and sensitivity to activation which can reduce anaphylactic episodes.

Safer short-term action steps that you can take to provide some relief include:

Adopting a low-histamine diet: For some people with MCAD, a low-histamine diet provides significant relief. Supplemental diamine oxidase can also help by increasing histamine breakdown. But, it’s important to keep in mind that this is only reducing exogenous (outside) histamine, and not altering the amount produced by your mast cells endogenously (within the body). Histamine is also only one of many mediators produced during mast cell degranulation. Focus on nutrients and foods known to stabilize mast cells: Many nutrients, including selenium (21) and vitamin C (22), have been shown to stabilize mast cells. A number of herbs and spices, like holy basil (23), peppermint (24), ginger (25), thyme (26), and turmeric (27) also have this effect. I have also seen good results with supplemental forms of quercetin (28), bromelain, nigella sativa (29), nettle (30), and butterbur. (31) Reducing stress: Corticotropin hormone, released in response to physical or psychological stress, destabilizes mast cells and causes them to release their mediators. (32) Entraining circadian rhythms: Mast cell activity closely mirrors circadian rhythms (33), so getting enough sleep and avoiding blue light at night is crucial. Ultimately though, we need to address the root cause:

Remove heavy metals from your system: Chelating agents can help to remove heavy metals from your system. This is best done under the guidance of a healthcare practitioner. Removal of old mercury fillings by a trained professional can also reduce the burden of heavy metals in the body. Treat infections: A comprehensive stool test can help identify parasites and other infections that could be contributing to mast cell activation. Heal your gut: Remove inflammatory foods and focus on nutrient density. Include plenty of probiotic, prebiotic, and healing foods in your diet.

Behavioral Medicine

5A's

5As for Adults

The 5A's provide health practitioners with five steps to better manage their patients' health issues (such as smoking cessation or weight loss):

  • ASK for permission to discuss weight and explore readiness
  • ASSESS obesity related risks and 'root causes' of obesity
  • ADVISE on health risks and treatment options
  • AGREE on health outcomes and behavioral goals and followup
  • ASSIST in accessing appropriate resources and providers

References:

5 A’s behavior change model   edit

[2023-09-20 Wed 09:36]

5 A’s behavior change model

The 5 A’s Behavior Change Model2 has been adapted for self-management support improvement.

The 5 A’s Behavior Change Model includes the following steps:

  1. Assess: Ask about or assess behavioral health risk(s) and factors affecting choice of behavior change goals or methods
  2. Advise: Give clear, specific, and personalized behavior change advice, including information about personal health harms and benefits
  3. Agree: Collaboratively select appropriate treatment goals and methods based on the beneficiary’s interest in and willingness to change the behavior
  4. Assist: Using behavior change strategies (self-help and/or counseling), aid the beneficiary in achieving agreed-upon goals by acquiring the skills, confidence, and social or environmental supports for behavior change, supplemented with adjunctive medical treatments when appropriate
  5. Arrange: Schedule follow-up contacts (in person or by telephone) to provide ongoing assistance or support and to adjust the treatment plan as needed, including referral to more intensive or specialized treatment

More info: 5 A’s Behavior Change Model: Adapted for Self-Management Support Improvement

Reference:

Anxiety Traps

  1. Catastrophizing: Imagining the worst possible outcome. "I will get fired if the presentation has any glitches."
  2. Mind reading: Imagining what others are thinking. "I know he doesn’t like working with me because he thinks I’m dumb."
  3. Fortune telling: Imagining what the future holds, but without data. "They will all hate me in the new group because I’m the only one who isn’t a physicist."
  4. Black-and-white thinking: Considering only two possible outcomes. "I’ll either hit a home run or get fired."
  5. Overgeneralizing: Painting all situations with a generalized outcome. "I presented to the CEO last year, and it didn’t go well. I never get things right or always fail when it comes to executive audiences."

How to get out of the traps:

  • Pause the pattern.
  • Name the trap.
  • Separate FUD from fact. Create a two-column list. On one side list all your fears, uncertainties, and doubts, or FUD. The second column is for verified facts.
  • Tell more stories. When we’re anxious, we tend not only to believe our own stories, we believe the most extreme and negative forms of them. Instead of curbing this reflexive habit, indulge it. Compose three separate stories and ensure they’re very different from each other.
  • Walk your talk. Ask yourself what you’d advise others to do.

BATHE Technique

BATHE for Primary Care Counselling

  • Background
  • Affect
  • Trouble
  • Handling
  • Empathy

CBT - STOPP

STOPP is CBT in a nutshell.

  • Learn this ONE KEY SKILL and you can start to take control of your emotions and your life.
  • "Between stimulus and response there is a space. In that space lies our freedom to choose our response. In our response lies our growth and our freedom". Viktor Frankl.

STOPP

  1. STOP !
    • Just pause for a moment
  2. TAKE A BREATH
    • Notice your breathing as you breathe in and out. In through the nose, out through the mouth.
  3. OBSERVE
    • What thoughts are going through your mind right now?
    • Where is your focus of attention?
    • What are you reacting to?
    • What sensations do you notice in your body?
  4. PULL BACK - PUT IN SOME PERSPECTIVE
    • DON'T BELIEVE EVERYTHING YOU THINK!
    • What's the bigger picture?
    • Take the helicopter view.
    • What is another way of looking at this situation?
    • What advice would I give a friend?
    • What would a trusted friend say to me right now?
    • Is this thought a fact or opinion?
    • What is a more reasonable explanation?
    • How important is this? How important will it be in 6 months time?
    • It will pass.
  5. PRACTISE WHAT WORKS - PROCEED
    • What is the best thing to do right now?
    • What is the most helpful thing for me, for others, for the situation?
    • What can I do that fits with my values?
    • Where can I focus my attention right now?
    • Do what will be effective and appropriate.

HOW TO USE STOPP:

  • Practise the first two steps often for a few days - many times every day at any time.
  • Read through the steps often.
  • Carry written reminders with you (use the printable resources below).
  • Practise STOPP by running through all the steps several times a day, every day…when you don't need it.
  • Start to use it for little upsets.
  • Gradually, you will find that you can use it for more distressing situations. Like any new habit or skill, it will become automatic over time.

References:

Apps:

Child psych

Children's Medication Clinic - Serious behavioral and emotional problems not requiring inpatient

  • Up to 17yo
  • Princeton Plaze
  • 1800 Mercy dr
  • Orlando, FL 32808
  • 507-875-3700

Cognitive Behavioral Technique (CBT)

  • Focuses on the identification and modification of dysfunctional thoughts to improve affect
  • Cognitive restructuring
    • Help patients change the way they think about themselves
    • Address catostrophic thinking
    • Treach patients to view a setback as a temporary lapse
    • Teach positive thinking (like replace thoughts that undermine weight management efforts)

Behavior Therapy:

  • Change behavior and the feelings will follow
  • Reinforce or extinguish a behavior (rewards, aversive stimuli, restructured environment)
  • Relaxation training (music, progressive body relaxation, yoga, deep breathing, walks, etc)

Components of Behavioral Therapy:

  1. Self-monitoring
    • Daily records of food intake, physical activity, weight
  2. Stimulus control
    • Avoidance, narrowing, use of inhibitory stimuli to reduce triggers
  3. Problem solving
    • Define the problem; brainstorm solutions; implement strategy
  4. Goal setting
    • Establish dietary and weight goals
  5. Contingency management
    • Develop recovery methods from overeating or weight gain
  6. Enlist social support
    • Recruit family/friends to help modify lifestyle behaviors
  7. Relapse prevention training
    • Expect setbacks; be prepared; view as temporary
  8. Stress management
    • Decrease negative impact of stress on positive behavior patterns
  9. Rewards
    • Congratulate self on successes, not mistakes; plan rewards for achieving goals
  10. Ongoing contact
    • To maintain progress, most programs require short interval appointments

Reference:

  • OMA Review Course 2016

Coping strategies to teach patients

  • Regularly practice relaxation techniques
    • Deep breathing
    • Muscle relaxation
  • Make a list of worries in the evening before bedtime and give yourself permission to address them tomorrow
  • Enlist or accept emotional support from others
  • Reduce caffeine consumption gradually (FDA recommends <400 mg for adults)
  • Adopt effective sleep hygiene practices
  • Use a digital application to promote self-help
    • Search in app store for: wellness, sleep, stress, etc

References:

  • JFP Vol 69, No 7 Sep 2020

Empathy

How to have EMPATHY

  • Eye contact - establish
  • Muscles of facial expression
  • Posture (open/closed)
  • Affect - recognize
  • Tone of voice - recognize
  • Hear the whole person (understand the context)
  • Your response

References:

Exposure Therapy for OCD: Exposure and Response Prevention (ERP)

Learning to gradually face your fears is one of the most effective ways to break the OCD cycle. For OCD, the technique for facing fears is called exposure and response prevention (ERP).

ERP is done by:

  • Exposing (E) yourself to situations that bring on obsessions (triggers)
  • Not engaging in the unhelpful coping strategies that include compulsions or rituals, and avoidance (Ritual Prevention- RP)

Steps:

  1. Step 1: Get to know your OCD better
    • To face your fears, it is helpful to know what you are thinking (your obsessions) and identify the triggers that bring on your obsessions and compulsions.
    • You can do this by keeping track of the triggers on a daily basis for 1 week by using the Obsessive Fear Monitoring Form. (see end)
    • Because obsessions can happen frequently, writing down 3 triggers per day (e.g. 1 in the morning, 1 in the afternoon, and 1 in the evening) will be enough to give you a good overview of your obsessions and compulsions.
    • In the column labeled ¡§Fear¡¨, rate how intense the fear was in the specific situation. Use a 0-10 rating scale, where 0 = no fear and 10 = extreme fear.
    • Finally, record all the compulsions/coping strategies you used in response to the obsession. Be sure to include both behavioural and/or mental strategies you used to manage the obsession and fear.
  2. Step 2: Build a fear ladder
    • After about 1 week of tracking your obsessions and compulsions, you will be ready to make a list of all the different situations that you fear.
    • Build a fear ladder by rank, ordering your triggers from least scary to most scary. For example, if you have contamination fears, being at a friend¡¦s apartment may be a situation that is low on the fear ladder because it only evokes a fear of 1/10. But using the bathroom in a shopping mall may be a situation that is very high on the ladder because it evokes a 9/10 fear. See Examples of Fear Ladders for some ideas about building your fear ladder.
      • TIP: Build a separate ladder for each of your obsessive fears. For example, you may need a separate hierarchy for all situations related to your fear of contamination. You may also need a separate ladder for all situations related to your fear of causing something terrible to happen.
  3. Step 3: Climb the fear ladder ¡V ERP
    • Once you have built a fear ladder, you are ready to face your fears by putting yourself in situations that bring on your obsessions (exposure), while resisting doing anything to control the obsessions and the anxiety associated with them (response prevention).

KEY POINTS TO MANAGING YOUR OCD (see Facing your Fears: Exposure for more tips):

  • Bottom up. Start with the easiest item on the fear ladder first (i.e. fear=2/10) and work your way up.
  • Track progress. Track your anxiety level throughout the exposure exercise in order to see the gradual decline in your fear of a particular situation. Use the Facing Fears Form to help you do this.
  • Feeling anxious when you try these exercises is a sign that you are on the right track. If you¡¦re not anxious you might be too low on your ladder, and if you are feeling flooded with excessive anxiety, chances are you started too high up on the ladder. Remember that regardless of how intense your fear is, it will peak and then level off. What goes up must come down! Even if you do nothing about it the fear will eventually go away on its own.
  • Don¡¦t avoid. During exposure, try not to engage in subtle avoidance (e.g. thinking about other things, talking to someone, touching the doorknob only with one finger instead of the whole hand, making mental promises to de-contaminate later on, etc.). Avoidance actually makes it harder to get over your fears in the long term.
  • Don¡¦t rush. It is important to try to stay in the situation until your fear drops by at least half (e.g. from 6/10 to 3/10), or until you notice a significant reduction from your fear at the start (e.g. from 7/10 to 4/10). Also, focus on overcoming 1 fear at a time. It is a good idea to do the exposure repeatedly until the first item on the hierarchy no longer causes much of a problem for you.

Engaging in Response Prevention

  • Resist the urge. In order for exposure to work, it is important that you try to resist, as much as possible, carrying out your compulsions during or after the exposure. The whole point of ERP is to learn to face your fear without having compulsions.
  • Modeling. If you have been performing compulsions for some time, it may be difficult to know how to face a feared situation without doing them. In this case, it can be helpful to ask a family member or a close friend who does not have OCD to show you how to, for example, wash hands quickly or leave home without rechecking appliances, and then model, or copy, their behaviour.
  • Delaying and reducing ritualizing as an alternative. You might find it very difficult to completely resist a compulsion, especially the first time you are facing your fears. In that case, you can try to delay acting on the compulsion rather than not doing it at all. For example, after touching the floor (exposure), wait for 5 minutes before washing your hands, and wash for 1 minute instead of 3 minutes. Try to gradually prolong the delay, so that you can eventually resist the compulsion altogether.
  • Re-exposure. If you do end up performing a compulsion, try to re-expose yourself to the same feared situation immediately, and repeat the practice until your fear drops by half. For example, Practice 1: touch the floor and wait for 5 minutes before washing hands for 1 minute. Practice 2: touch the floor again immediately after washing, and wait for another 5 minutes before washing for 1 minute. Repeat this process until your anxiety drops from, say, 6/10 to 3/10.

How to move on.

  • Once you experience only a little anxiety when completing an exercise, you can move on to the next one.
    • For example, after several practices, you might feel very little anxiety when you wait 5 minutes to wash your hands after touching the floor. You can then challenge yourself to wait for 8 minutes before washing your hands after touching the floor. Again, repeat this practice until your anxiety drops by half or is significantly reduced from where it was at the start.

References:

#+Obsessive Fear Monitoring Form

Date Triggers for Obsessions (specific situations, objects, people, or thoughts that provoke obsessive fears) Obsession Fear (0-10) Compulsions/Coping Strategies
         

#+Example Fear Ladder

Step Situation Fear Rating
3. Ask a coworker what they did on the weekend 4
2. Ask coworkers questions about how to complete tasks at work 3
1. Say ¡§hi¡¨ to coworkers 2

#+Daily Exposure Practice Form Task:_________________________ Ritual prevention (or delay)_____________________________ Expected Initial Distress rating % (before starting Exposure)________________________ Goal: Distress level % (after Exposure) _ Frequency of Exposures _ times per __ (day/week)

Day/Date Start time Stop time Distress% start Distress % end Comments
           

Distress Rating 0-100 (No or minimal/Moderate/Severe/Worst ever distress) Use this form when undertaking Exposure & Response Prevention (ERP), when NOT responding to the urge to perform a ritual or compulsion. It is normal to feel very anxious and distressed at the thought of either delaying or not doing the ritual

Military Psychiatry

Extreme in theater:

  • Separate / Hold / Monitor until able to address
  • Judiciously restrain
  • Neurolepticize if needed with caution

Not as extreme in theater: (PIE)

  • P - Proximity - Start treatment as far forward as possible
  • I - Immediacy - Treatment begins ASAP
  • E - Expectancy - Instill expectancy in SM that they will return to duty

4 Steps:

  1. H&P
  2. BATHE
    • Background: What happened?
    • Affect: How does it make you feel?
    • Troubles: What troubles you about _ ?
    • Handle: How are you handling _ ?
    • Empathy: Demonstrate empathy
  3. Mental Status Exam / SIG E CAPS
  4. Eval though content/process, ego mechanisms (impulses, coping skills, etc)
  5. Disposition

Mindfulness

  • Acknowldege
  • Notice triggers
  • Remember why

Example:

  • Acknoledge pain when it occurs
  • Notice whether something is making it worse in the moment
  • Remember the top 3 reasons that you want to stay off opioids:
    • My kids
    • I do not want to be dependent on something
    • My health

NAME it to Tame it:

  • Notice
    • Notice the strong emotions that are occurring and name them (anger, fear, unease, etc)
    • Choose a word to describe the emotional reaction
  • Acknowledge
    • Acknowledge this emotion and calmly hover over it to allow your executive brain to filter and organize it
  • Make room
    • Make room for the emotion. Be with the anger, fear, and unease without explaining it.
  • Expand awareness
    • Expand awareness and monitor strong emotions so that the emotions do not take over when they return

Reference:

  • AFP Nov 2023 Vol 108, No 5

Motivational Interviewing (MI)

  • Spirit of MI: Emphasizes personal choice and control
    • Collaborative: Partnership between patient and clinician
    • Evocative: Reasons to change come from the patient rather than the doctor
    • Autonomy supporting: Ultimately the patient decides what to do
  • Four Guiding Principles: (RULE)
    1. R - Resist the righting reflex
    2. U - Understand your patient's motivation
    3. L - Listen (actively) to your patient
    4. E - Empower your patient
  • Guiding Principles: (GRACE)
    1. G - Generate a gap (develop discrepancy)
    2. R - Roll with resistance
    3. A - Avoid arguments
    4. C - Can do (support self efficacy)
    5. E - Express empathy
  • Key Processes:
    • Engagement
      • Set the agenda collaboratively
      • Non-judgemental
      • Patient-centered
    • Focusing
      • Develop the conversation around a single issue
    • Evoking (DARN)
      • Move the conversation toward a prepatory change talk
      • D - Desire to change (want, like, wish..)
      • A - Ability to change (can, could..)
      • R - Reasons to change (if..then)
      • N - Need to change (need, have to, got to..)
      • Importance ruler (scale 1-10)
    • Planning
      • Explore barriers to change
      • Fascilitate change
      • Explore commitment
  • Practitioner Approach: (OARS)
    • O - Open questions
    • A - Affirmations
    • R - Reflections
    • S - Summaries
  • Motivational Interviewing:
    1. Agenda setting - Would you mind if I talked with you about your weight?
    2. Exploration
      • Patient's desire - Are you interested in being more active?
      • Patient's ability - Would you be able to walk for 30min each day?
      • Patient's reasons - You mentioned you are now more open to exercising. What makes you open to it now?
      • Patient's need - How important is it that you get more fit?
    3. Providing information - Obesity has been linked to a greater risk of DM. Losing even a modest amount of weight can lower your risk. There are several options available to help you.
    4. Listening and summarizing - It sounds like you are interested in seeing a dietition for nutrition advice but are worried about finding the right one.
    5. Generating options and contracting - It sounds like you have several good ideas about how to reduce your calorie intake. Which one do you think would work best? I look forward to hearing about it at our next appointment.

References:

  • CME Bulletin - Diagnosis and Management of Obesity
  • FPM Sep/Oct 2016
  • OMA Review Course 2016

Online Therapy Services   edit

[2023-10-19 Thu 14:32]

2023’s Best Online Therapy Services Compared

  • Best Overall Provider:
    • Talkspace
  • Most Affordable Provider:
  • Best for Couples Therapy:
    • Hey Ritual
    • Bi-weekly solo therapy sessions:
      • $100/month ($100 total)
      • $85/month with 3-month commitment ($255 total)
      • $75/month with 6-month commitment ($225 total)
    • Weekly solo therapy sessions:
      • $160/month ($160 total)
      • $136/month with 3-month commitment ($408 total)
      • $120/month with 6-month commitment ($360 total)
    • Couples sessions (three solo and one couple session/month):
      • $260/month ($260 total)
      • $221/month with 3-month commitment ($663 total)
      • $195/month with 6-month commitment ($1170 total)
  • Most User-Friendly:
    • Brightside
  • Best for CBT:
    • Online-Therapy.com (also couples)
    • Basic Plan: The cost is $50 per week, billed monthly as $200. This plan includes all their interactive features and therapy resources, as well as therapy via chat. However, no live sessions are included in this package. This might be perfectly sufficient for users that just need some guided support, or those that want to test out the platform before upgrading to a plan with live sessions.
    • Standard Plan: The cost is $80 per week, billed monthly as $320, and includes one live 45-minute therapy session via video, voice or text per week in addition to all the other features.
    • Premium Plan: The cost is $110 per week, billed monthly as $440, and includes two live 45-minute therapy sessions via video, voice or text per week in addition to all the other features.
    • Couples Therapy Plan: The cost $110 per week, billed monthly. This includes unlimited messaging with a therapist for the couple, one weekly 45-minute couples therapy session via video, voice or text, as well as access to all the other features.
  • Large Pool of Therapists:
  • Best for Teens:
  • Best for LGBTQIA+:
  • Great Video Therapy Platform:
    • Amwell

Reference:

Opposite Action

Act opposite to the emotional urge in the service of pursuing values or goals.

  • Many often become obsessively focused on pain or anxiety that they allow it to limit their participation in activities
  • They can instead engage in counteractivities, within reason, despite pain or anxiety being present.
  • They can engage in activities (physical and mental) as tolerated despite feeling pain or anxiety

PLISSIT Technique

PLISSIT

  • Permission
  • Limited Information
  • Specific Suggestions
  • Intensive Therapy

Shared decision making

  1. Identify percieved risks and benefits
  2. Address percieved risks and benefits
  3. Establish ease of use
  4. Make a plan

References:

  • JFP 2013;62(12 suppl CME):S20-S26

Stages of Change

  1. Pre-contemplation (Start MI here)
  2. Contemplation (MI)
  3. Preparation (use CBT here)
  4. Action (CBT)
  5. Maintenance (CBT)

Reference:

  • OMA Review Course 2016

Stop Catastrophizing

Catastrophize:

  • On hearing uncertain news, you imagine the worst possible outcome

Catastophizers learn to choose the worst possible outcome because it allows for the greatest sense of relief when they are reassured.

Catastrophizers rush to external sources to calm themselves down:

  • checking whether anyone else has "come through" the same problem;
  • matching symptoms online to obtain a diagnosis and treatment options;
  • asking a professional to tell them that they will survive.

Once they are reassured, they feel better, they have "rewarded" this seeking behavior. The next time they feel uncertain or threatened, they will ratchet up their anxiety with a catastrophic thought, then look outwards for reassurance even faster than before.

In this way, catastrophizing soon becomes a well-entrenched habit. The greatest problem with seeking others to alleviate anxiety is that it offers only temporary relief.

Plan for tackling anxiety:

  1. Accept yourself.
    • Anxiety is energy. Look for enjoyable ways to challenge yourself and use your energy more positively:
      • Taking regular aerobic exercise.
      • Learning something new.
      • Taking up a creative passion.
  2. Take control.
    • Establish a regular "worry time".
      • Start by setting aside half an hour every day. Write down all your concerns in specific terms
      • Assign a score on a scale of 0 to 100% to estimate how distressed this possibility makes you feel
      • List all the possible explanations for your concern, then rank each one according to how likely it is to be correct
      • Score your worry for the level of distress it is causing you now. Gradually, you will be able to reduce the amount and frequency of worry time.
  3. Use the "best friend test".
    • Ask yourself what you would advise your best friend to do about each concern, and take that action
  4. Learn to self-soothe.
    • Whenever you are overwhelmed by anxiety and feel you must seek reassurance, give yourself permission to do so – but not straight away.
      • Start with 2 min.
        • Breathing slowly in through your nose and out through your mouth, or taking some gentle exercise, will help.
        • Gradually, you will find you can wait longer.
        • When you get to the point where you can wait more than 20 minutes, most people find they no longer need to be reassured by others.

Study: How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing

[2024-04-13 Sat 13:10]

  • Background:
    • The psycho-physiological changes in brain-body interaction observed in most of meditative and relaxing practices rely on voluntary slowing down of breath frequency. However, the identification of mechanisms linking breath control to its psychophysiological effects is still under debate.
    • This systematic review is aimed at unveiling psychophysiological mechanisms underlying slow breathing techniques (<10 breaths/minute) and their effects on healthy subjects.
  • Methods:
    • A systematic search of MEDLINE and SCOPUS databases, using keywords related to both breathing techniques and to their psychophysiological outcomes, focusing on cardio-respiratory and central nervous system, has been conducted.
    • From a pool of 2,461 abstracts only 15 articles met eligibility criteria and were included in the review. The present systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
  • Results:
    • The main effects of slow breathing techniques cover autonomic and central nervous systems activities as well as the psychological status.
    • Slow breathing techniques promote autonomic changes increasing Heart Rate Variability and Respiratory Sinus Arrhythmia paralleled by Central Nervous System (CNS) activity modifications.
    • EEG studies show an increase in alpha and a decrease in theta power.
    • Anatomically, the only available fMRI study highlights increased activity in cortical (e.g., prefrontal, motor, and parietal cortices) and subcortical (e.g., pons, thalamus, sub-parabrachial nucleus, periaqueductal gray, and hypothalamus) structures.
    • Psychological/behavioral outputs related to the abovementioned changes are
      • increased comfort
      • relaxation
      • pleasantness
      • vigor and alertness
      • reduced symptoms of arousal, anxiety, depression, anger, and confusion
  • Conclusions:
    • Slow breathing techniques act enhancing autonomic, cerebral and psychological flexibility in a scenario of mutual interactions: we found evidence of links between
      • parasympathetic activity (increased HRV and LF power)
      • CNS activities (increased EEG alpha power and decreased EEG theta power) related to emotional control
      • psychological well-being in healthy subjects
    • Our hypothesis considers two different mechanisms for explaining psychophysiological changes induced by voluntary control of slow breathing:
      • one is related to a voluntary regulation of internal bodily states (enteroception)
      • the other is associated to the role of mechanoceptors within the nasal vault in translating slow breathing in a modulation of olfactory bulb activity, which in turn tunes the activity of the entire cortical mantle.

Reference:

  • Zaccaro A, Piarulli A, Laurino M, Garbella E, Menicucci D, Neri B, Gemignani A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front Hum Neurosci. 2018 Sep 7;12:353. doi: 10.3389/fnhum.2018.00353. PMID: 30245619; PMCID: PMC6137615.
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137615/

Study: Latent Diversity in Human Concepts (Language hinders discourse)

  • Many social and legal conflicts hinge on semantic disagreements. Understanding the origins and implications of these disagreements necessitates novel methods for identifying and quantifying variation in semantic cognition between individuals.
  • We collected conceptual similarity ratings and feature judgements from a variety of words in two domains. We analyzed this data using a non-parametric clustering scheme, as well as an ecological statistical estimator, in order to infer the number of different variants of common concepts that exist in the population.
  • Our results show at least ten to thirty quantifiably different variants of word meanings exist for even common nouns.
  • Further, people are unaware of this variation, and exhibit a strong bias to erroneously believe that other people share their semantics.
  • This highlights conceptual factors that likely interfere with productive political and social discourse.

Reference:

Calculators

Cardiology

4 Factors of O2 Consumption For Heart Work

  1. Rate
  2. Blood Pressure
  3. Preload
  4. Contractility

5 MOst Common Causes Of Sudden Cardiac Death In Young Athletes

  1. Herpertrophic Cardiomyopathy
  2. WPW
  3. Long QT
  4. Congenital Aortic Stenosis
  5. Anomalous coronary

Abdominal Aortic Aneurysm

Table 2: Rupture risk
Size in cm Risk of rupture in 1 yr (%)
< 4 0
4 - 5 0.5-5
5 - 6 3 - 15
6 - 7 10 - 20
7 - 8 20 - 40
> 8 30 - 50
Table 3: Surveillance recommendations
Aneurysm diameter ACC/AHA Recommendation
> 2.5 cm but <3.0 cm No surveillance
3.0 - 3.9 cm Every 2-3 years
4.0 - 5.4 cm US or CT every 6-12 mo; Consider vascular surgery referral if > 5.0; Elective repair is recommended for appropriace candidates > 5.0cm
> 5.4 cm Surgical Repair

Reference:

  • AFP Aug 2022 Vol 106 No 2

AHA's Simple Seven

This simple, seven step list has been developed to deliver on the hope we all have–to live a long, productive healthy life.

  1. High blood pressure
  2. Cholesterol
  3. Blood Sugar
  4. Diet
  5. Physical Activity
  6. Weight
  7. Smoking

References:

ASCVD

Increase Factors that enhance risk:

  • FH of premature ASCVD (M<55, F<65)
  • Primary HLD (LDL 160-189, non-HDL 190-219)
  • Metabolic syndrome
  • CKD
  • Chronic inflammatory condition
  • Premature menopause (<40) or h/o pre-eclampsia
  • High risk race or ethnicity (South Asian ancestry)
  • Lipid levels and other biomarkers associated with incresaed 10y ASCVD:
    • Persistent hypertriglyceridemia (>175)
    • High sensitivity CRP >=2
    • Lipoprotein A >=50
    • Apolipoprotein B >= 130
    • Ankle-brachial index < 0.9

ASCVD Calculation Formula   edit

Atrial Fibrillation

Anticoagulation

  • Anticoagulation is recommended for AF at a CHA2DS2-VASc score of 2 for men and 3 for women without moderate or severe mitral stenosis or a mechanical valve.
    • The score has not been validated for mitral stenosis or mechanical valves.
  • Direct oral anticoagulants are recommended over warfarin for AF without moderate or severe mitral stenosis or a mechanical valve.
    • Warfarin is still recommended for mitral stenosis and mechanical valves.
  • Although CHA2DS2-VASc scores of 0 for men and 1 for women do not require treatment, scores of 1 for men and 2 for women are indeterminate and anticoagulation may be considered by shared decision-making.

Rate Control

  • Ventricular rate control is accepted as alternative to rhythm control for first-line management of chronic AF
  • Lenient rate control (<110bpm) is as effective as strict (<80bpm)
  • A beta-blocker is preferred for rate control in those with CAD or systolic dysfunction
  • Verapamil or diltiazem may be preferred in those with asthma
  • Amiodarone may be effective if other drugs have failed

Rhythm Control

  • Treatment of choice for urgent conversion is DC cardioversion

References:

  • AFP Vol 101 No 2 Jan 2020
  • JAMA Vol 322 No 18 Nov 2019

CHA2DS2-VASc Risk Stratification Score

Estimation of stroke risk for nonvalvular atrial fibrillation in adults

CHA2DS2-VASc:

  • Congestive Heart Failure
  • Hypertension
  • Age ≥75 Years (Doubled)
  • Diabetes Mellitus
  • Prior Stroke Or TIA Or Thromboembolism (Doubled)
  • Vascular Disease
  • Age 65 To 74 Years
  • Sex Category

Calculator:

  • Sex
    • Female (1 point)
    • Male (0 points)
  • Age
    • ≤64 years old (0 points)
    • 65 to 74 years old (1 point)
    • ≥75 years old (2 points)
  • Comorbidities
    • Heart failure (1 point)
    • Hypertension (documented diagnosis or pharmacologically treated) (1 point)
    • Diabetes mellitus (1 point)
    • History of stroke, TIA, or thromboembolism (2 points)
    • Vascular disease (history of MI, PAD, or aortic atherosclerosis) (1 point)
Table 4: Unadjusted stroke rate
0 points: 0.2% per year
1 point: 0.6% per year
2 points: 2.2% per year
3 points: 3.2% per year
4 points: 4.8% per year
5 points: 7.2% per year
6 points: 9.7% per year
7 points: 11.1% per year
8 points: 11% per year
9 points: 12.2% per year

Basic Life Support (BLS)   edit

[2023-10-13 Fri 12:24]

Exposure

Standard precautions include the use of:

  • Personal protective equipment (PPE): Specialized clothing, equipment and supplies that prevent direct contact with potentially infectious materials. PPE includes gloves, CPR breathing barriers, gowns, face shields, protective eyewear and biohazard bags.
  • Hand hygiene: Hand washing is the most effective measure to prevent the spread of infection. Alcohol-based hand sanitizers allow you to clean your hands when soap and water are not readily available and your hands are not visibly soiled.
  • Engineering controls: Objects used in the workplace that isolate or remove a hazard, reducing the risk of exposure.
  • Work practice controls: Methods of working that reduce the likelihood of an exposure incident by changing the way a task is carried out.
  • Proper equipment cleaning: After providing care, the equipment and surfaces used should always be cleaned and disinfected or properly disposed.
  • Proper spill cleanup procedures: If a spill occurs, appropriate measures should be taken to limit and reduce exposure to possible contaminants.

When an exposure incident occurs, follow these steps as well as any steps outlined by your healthcare facility:

  • Wash needlestick injuries, cuts and exposed skin.
  • If blood or other body fluids are splashed around the mouth or nose, flush the area with water.
  • If eyes are involved, irrigate with clean water, saline or sterile irrigant solution for 20 minutes.
  • Clean the contaminated area thoroughly with soap and water.

After the exposure incident has occurred, it important to:

  • Report the incident immediately to the appropriate person identified in your facility’s infection/exposure control plan.
  • Write down what happened, including the time, date and circumstances, actions taken and any other information required by your employer.
  • Seek immediate follow-up care according to your facility’s infection/exposure control plan.

Assessment

  1. Perform Visual Survey
    • Scene Size-Up
      • Safety
      • Number of Patients
      • Nature of Illness or Mechanism of Injury
  2. Obtain Consent
    • To obtain consent from an awake and alert adult patient, follow these steps:
      • Identify yourself to the patient or legal guardian.
      • State your level of training.
      • Explain what you observe.
      • Explain what you plan to do.
      • Ask for permission from the patient to provide care.
    • If an adult patient is unresponsive, has an altered mental status, is mentally impaired or is unable to give consent verbally or through a gesture, then consent is implied.
  3. Check for Responsiveness
  4. Open the Airway
  5. Simultaneously Check for Breathing, a Pulse and Life-Threatening Bleeding
    • no more than 10 seconds

Care

Recovery Positions

  • Kneel at the patient’s side.
  • Lift the patient’s arm closest to you up next to their head.
  • Place the patient’s arm farthest from you next to their side.
  • Grasp their leg closest to you, flex it at the hip and bend the knee toward their head.
  • Place one of your hands on the patient’s shoulder and your other hand on their hip farthest from you.
  • Using a smooth motion, roll the patient toward you by pulling their shoulder and hip with your hands. Make sure the patient’s head remains in contact with their extended arm.
  • Stop all movement when the patient is on their side.
  • Place their knee on top of the other knee so that both knees are in a bent position.
  • Place the patient’s free hand under their chin to help support their head and airway.

To provide care to an adult patient in respiratory arrest or respiratory failure, follow these steps.

  • If you have not already done so, activate EMS, the rapid response team or the resuscitation team, as appropriate, and call for an AED.
  • Deliver 1 ventilation every 6 seconds; each ventilation should last about 1 second and make the chest begin to rise. If an advanced airway is in place, the rate remains the same.
  • Perform primary assessment (Airway, Breathing, Circulation, Disability, Exposure) and emergent/ initial interventions, if not already done.
  • Continue to check breathing and pulse every 2 minutes; if pulse becomes absent, start CPR immediately and use an AED when it's available.
  • Position patient as appropriate for clinical condition.
  • Perform secondary assessment as patient condition allows.
  • Reassess patient, recognize issues and provide care as needed.

MI Immediate Care

  • ASA
    • In cases of suspected MI, administer two to four low-dose (81-mg) aspirin or one 325-mg adult aspirin based on your facility’s protocols.
    • Make sure that the patient chews the medication.

CPR:

  • It is critical to maintain a rate greater than 100 compressions per minute and a depth of at least 2 inches (5 cm). Both rate and depth of compressions are best measured using a feedback device if available.
  • deliver 2 ventilations that last about 1 second each and make the chest begin to rise; allow the air to exit before delivering next ventilation
  • To provide ventilations, you can use the following methods:
    • Pocket mask ventilations
    • Bag-valve-mask resuscitator ventilations
    • Mouth-to-mouth ventilations
    • Mouth-to-nose ventilations
  • For adult patients, high-quality CPR includes 30 chest compressions followed by 2 ventilations. Remember, when an advanced airway is in place, the 30:2 ratio does not apply as one provider delivers 1 ventilation every 6 seconds, while the other provider delivers continuous chest compressions without pausing for ventilations.

Continue CPR/AED use until:

  • The team leader tells you to stop.
  • Other trained providers arrive to relieve you.
  • You see signs of ROSC.
  • You are presented with a valid DNR order.
  • You are too exhausted to continue.
  • The situation becomes unsafe.

If the patient shows signs of ROSC:

  • Stop CPR/AED use.
  • Check for breathing and a pulse. It is appropriate to check the carotid or femoral pulse when the patient shows signs of ROSC.
  • Monitor the patient until more advanced resources take over.

Cardiac Arrest in the Pregnant Patient

BAACC TO LIFE

  • Bleeding
  • Anesthesia
  • Amniotic fluid embolism
  • Cardiovascular/cardiomyopathy
  • Clot/cerebrovascular
  • Trauma
  • Overdose (opioids, magnesium sulfate, other)
  • Lung injury/acute respiratory distress syndrome
  • Ions (glucose, potassium)
  • Fever (sepsis)
  • Eaclampsia/emergency hypertension

Provide Left Uterine Displacement (LUD)

  • From the patient’s left side, reach across the patient, place both hands on the right side of the uterus, and pull the uterus to the left and up.
  • Alternatively, from the patient’s right side, place both hands on the right side of the uterus and push the uterus to the left and up.

Common Legal Considerations

  • Duty to Act: The duty to respond to an emergency and provide care. Failure to fulfill these duties could result in legal action.
  • Scope of Practice: The range of duties and skills you have acquired in training that you are authorized to perform by your certification to practice.
  • Standard of Care: The public’s expectation that personnel summoned to an emergency will provide care with a certain level of knowledge and skill.
  • Negligence: Failure to follow a reasonable standard of care, thereby causing or contributing to injury or damage.
  • Refusal of Care: A competent patient’s refusal of care from a healthcare provider. Refusal of care must be honored, even if the patient is seriously injured or ill or desperately needs assistance. A patient can refuse some or all care. If a witness is available, have the witness listen to any refusal of care, and document it in writing.
  • Advance Directives: Written instructions that describe a patient’s wishes (or the wishes of the parent or legal guardian) regarding medical treatment or healthcare decisions. Guidance for advance directives, including any required identification and verification process, is documented in state, regional or local laws, statutes and/or protocols, and must be followed. Advance directives include:
    • Do Not Resuscitate (DNR) orders, also called Do Not Attempt Resuscitation (DNAR) orders.
    • Physician Orders for Life-Sustaining Treatment (POLST).
  • Battery: The unlawful, harmful or offensive touching of a patient without the patient’s consent.
  • Abandonment: Discontinuing care once it has begun. You must continue care until someone with equal or more advanced training takes over.
  • Confidentiality: While providing care to a patient, you may learn details about the patient that are private and confidential. Do not share this information with anyone except personnel directly associated with the patient’s medical care.
  • Consent
    • To obtain consent from an adult patient, follow these steps:
      • Identify yourself to the patient or legal guardian.
      • State your level of training.
      • Explain what you observe.
      • Explain what you plan to do.
      • Ask for permission from the patient or legal guardian to provide care.
    • If a patient is unresponsive, has an altered mental status, is mentally impaired or is unable to give consent verbally or through a gesture, then consent is implied.

BLS: Children and Adolescents

Definitions:

  • An infant is defined as someone under the age of 1.
    • Follow infant guidelines
  • A child is defined as someone from the age of 1 to the onset of puberty as evidenced by breast development in girls and underarm hair development in boys (usually around the age of 12).
    • Follow child guidelines
  • An adolescent is defined as someone from the onset of puberty through adulthood.
    • Follow adult guidelines

Pulse (60 bpm):

  • If their central pulse is > 60 bpm, deliver 1 ventilation every 2 to 3 seconds. If an advanced airway is in place, the rate remains the same.
    • If at any time central pulse decreases to ≤ 60 bpm with poor perfusion despite adequate ventilations and oxygen, start CPR.
  • If their central pulse is ≤ 60 bpm with signs of poor perfusion, start CPR. If at any time central pulse and perfusion improve, stop CPR and deliver 1 ventilation every 2 to 3 seconds until the patient is ventilating sufficiently.

AED (55 lbs)

  • For infants up to 1 year old:
    • Use pediatric pads if available. If pediatric pads aren’t available—or the AED doesn’t have a pediatric setting—it’s safe to use adult AED pads or adult levels of energy.
    • Always use an anterior/posterior pad placement. To do this, apply one pad to the center of the infant’s chest—on the sternum—and one pad to the infant’s back between the scapulae
  • For children 8 or younger or weighing 55 pounds (25 kg) or less:
    • Use pediatric pads if available. If pediatric pads aren’t available—or the AED doesn’t have a pediatric setting—it’s safe to use adult AED pads or adult levels of energy.
    • Use an anterior/lateral placement, according to the manufacturer instructions: Place one pad to the right of the sternum and below the right clavicle. Place the other on the left side of the chest on the mid-axillary line, a few inches below the left armpit.
    • Or, use an anterior/posterior pad placement, if the AED pads risk touching each other on the child’s chest or the manufacturer recommends.
  • For children older than 8 years or weighing more than 55 pounds (25 kg):
    • Use adult AED pads.
    • Use an anterior/lateral or anterior/posterior placement, according to manufacturer instructions.

Compression Depth

  • Adult: At least 2 inches (5 cm) but no more than 2.4 inches (6 cm)
  • Child: About 2 inches (5 cm) or one-third the anterior-posterior diameter of the chest
  • Infant: About 1.5 inches (3.8 cm) or one-third the anterior-posterior diameter of the chest

Obstructed Airway

Encourage the adult or child to continue coughing until they are able to breathe normally.

  • If the patient cannot breathe or has a weak or ineffective cough, summon additional resources and obtain consent.
  • Perform a series of 5 back blows and 5 abdominal thrusts until the person can cough forcefully, speak, cry or breathe; or they become unresponsive.

Unresponsive Adult or Child

  • Immediately begin CPR, starting with chest compressions.
  • After each set of compressions, open the patient’s mouth and look for the object before attempting ventilations. If you see the object in the patient’s mouth, remove it using a finger sweep. If you do not see the object, do not perform a blind finger sweep. Next, attempt 2 ventilations.

Opioid overdose

Notes:

  • For a patient in cardiac arrest due to opioid overdose, high-quality CPR remains the priority over naloxone administration and should not be delayed or interrupted.
  • For a patient in respiratory arrest due to suspected or known opioid overdose, ventilations remain the priority over the administration of naloxone and should not be delayed or interrupted. Follow the manufacturer’s instructions or your facility’s protocol for naloxone administration. Subsequent doses of naloxone may be repeated every 2 to 3 minutes as needed

Opioid Overdose Triad

  • Pinpoint pupils.
  • Respiratory depression.
  • Unconsciousness or severe sleepiness.
  • Other indicators of opioid overdose include:
    • Cyanosis.
    • Track marks from intravenous drug use.
    • Prescription pill bottles, pipes, needles, syringes, pill powder or other drug-related items.
    • History of opioid drug abuse.

Naloxone:

  • Naloxone may be administered to adult and pediatric patients via the intravenous (IV), intraosseous (IO), intramuscular (IM), subcutaneous (SC) or intranasal (IN) route.
  • Follow the manufacturer’s instructions or your facility’s protocol for naloxone administration. Subsequent doses of naloxone may be repeated every 2 to 3 minutes as needed. Do not delay or disrupt other interventions, such as ventilations or CPR, while waiting for naloxone to work.
  • If the patient responds, place them in a recovery position providing you do not suspect a head, neck, spinal, hip or pelvic injury. If they vomit, suction their airway or call for help to provide suctioning. Reassess the patient for any changes in condition until EMS, the rapid response team or the resuscitation team arrives. If the patient stops responding, immediately reassess breathing and pulse. Then, begin care as appropriate. Repeat naloxone administration every 2 to 3 minutes as needed.
  • Monitor the patient for 4 to 6 hours after last dose of naloxone. Consider longer observation times if extended-release or long-acting opioid. Consider admission and initiation of a continuous naloxone infusion if potential for recurrence of respiratory depression due to opioid.

Cardiac Clearance for Surgery

Risk for Major Cardiac Complications following surgery

Assign a point for each:

  1. High-risk surgery (intraperitoneal, intrathoracic, suprainguinal vascular)
  2. H/o MI or pos GXT, or current chest pain secondary to myocardial ischemia, current nitrate therapy, or EKG with pathologic Q wave
  3. H/o CHF, pulmonary edema, r paroxysmal nocturnal dyspnea; or current bilateral rales, S3, or CXR with pulmonary vascular redistribution
  4. H/o cerebrovascular disease
  5. Preoperative treatment with insulin
  6. Preoperative serum creatinine >2.0mg/dL
Score Risk class % Risk for complication
0 I 0.4
1 II 0.9
2 III 6.6
3 IV 11.0

Surgical risk category

  • High (Cardiac risk >5%)
    • Aortic or other major vascular surgery
    • Peripheral vascular surgery
  • Intermediate (Cardiac risk 1-5%)
    • Carotid endarterectomy
    • Head and neck surgery
    • Intraperitoneal or intrathoracic surgery
    • Orthopedic surgery
    • Prostate surgery
  • Low (Cardiac risk <1%)
    • Superficial procedures
    • Breast surgery
    • Cataract surgery
    • Endoscopic procedures
    • Most ambulatory surgeries

References:

  • AFP Vol 85 No 3 Feb 2012

Pre-op Clearance

Cardiac Risk Index (Assign 1 point for each risk factor):

  • High risk surgery (intraperitoneal, intrathoracic, or suprainguinal vascular surgery)
  • History of ischemic heart disease
    • Current chest pain from suspected MI
    • Current or past use of nitrate therapy
    • EKG with pathologic Q waves
    • History of MI or positive exercise stress test
  • History of heart failure
    • CXR with pulmonary vascular redistribution
    • Paroxysmal nocturnal dyspnea
    • Pulmonary edema, bilateral rales, or S3 gallup
  • History of cerebrovascular disease
    • History of TIA or stroke
  • Preoperative treatment with insulin
  • Preoperative creatinin level >2 mg/dL

Score:

Points Risk of major cardiac event
0 0.4%
1 0.9%
2 6.6%
3 11%

Surgical procedures risk stratified:

Low risk (<1% risk of major adverse cardiac event)

  • Ambulatory surgery
  • Breast surgery
  • Cataract surgery
  • Endoscopic procedures
  • Superficial procedures

Higher risk (>1% risk of major adverse cardiac event)

  • Aortic and other major vascular surgery
  • Emergent procedures
  • Head and neck surgery
  • Intraperitoneal and intrathoracic surgery
  • Open urologic surgery
  • Orthopedic surgery
  • Prolonged procedures with large fluid shifts and/or blood loss

Antiplatelet management:

  • Primary prevention
    • Hold before surgery (7-10d if possible) unless risk of major adverse cardiac event is greater than risk of bleeding
  • Secondary prevention
    • Intracranial, major spinal, or other high risk bleeding surgery:
      • Hold before surgery (7-10d if possible) unless risk of major adverse cardiac event is greater than risk of bleeding
    • Most other sureries
      • Continue perioperatively, unless risk of major adverse cardiac event is greater than risk of bleeding

References:

  • AFP Vol 95 No 10 May 2017

Cardiac Medications

  • ACE Inhibitors
    • Indications
      • Patients with hypertension, diabetes mellitus, chronic kidney disease, abnormal left ventricular function, systolic heart failure, or recent MI
    • Comments
      • Decrease mortality rates Use caution in pregnant women and in patients with angioedema, renovascular disease, or hyperkalemia
  • Angiotensin receptor blockers
    • Indications
      • Patients in whom ACE inhibitors are not tolerated
    • Comments
      • No additional benefit vs. ACE inhibitors Use caution in pregnant women and in patients with angioedema, renovascular disease, or hyperkalemia
  • Beta blockers
    • Indications
      • First-line therapy in patients with history of MI, acute coronary syndrome, systolic heart failure, angina pectoris, atrial fibrillation, or atrial flutter Consider for patients with essential tremor, hyperthyroidism, or migraine
    • Comments
      • Decrease mortality rates Use caution in older patients (may increase stroke risk) and in those with bronchospastic disease, second- or third-degree heart block, symptomatic bradycardia, or depression
  • Calcium channel blockers
    • Indications
      • Consider for patients whose symptoms are not controlled with or who cannot tolerate beta blockers, and for patients with Raynaud disease Can be used in patients with angina pectoris, atrial fibrillation, or atrial flutter
    • Comments
      • Use long-acting nondihydropyridines; avoid short-acting nifedipine Use caution in patients with second- or third-degree heart block
  • Nitrates
    • Indications
      • Patients with angina whose symptoms are not controlled with beta blockers or calcium channel blockers can use long-acting nitrates; short-acting nitrates can be used for quick relief of symptoms
    • Comments
      • Evidence lacking on mortality benefit Use caution in patients with hypotension
  • Ranolazine (Ranexa)
    • Indications
      • Patients with recent MI or stable coronary artery disease Adjunctive therapy in patients whose symptoms are not controlled with beta blockers or calcium channel blockers, or in whom beta blockers are not tolerated
    • Comments
      • Does not lower blood pressure Use caution in patients with impaired liver function and in those taking QT-prolonging medications

References:

  • AFP Vol 97 No 6 Mar 2018

Cardiology Differential

  1. Coronary circulation
  2. Arrhythmia
  3. Valves
  4. Myocardium
  5. Pericardium

Cardiovascular Fitness (CRF)

Changes in Cardiorespiratory Fitness and Survival in Patients With or Without Cardiovascular Disease

  • During a median follow-up of 6.3 years (IQR: 3.7-9.9 years), 18,302 participants died with an average yearly mortality rate of 27.6 events per 1,000 person-years.
  • In general, changes in CRF ≥1.0 MET were associated with inverse and proportionate changes in mortality risk regardless of baseline CRF status.
    • For example, a decline in CRF of >2.0 METS was associated with a 74% increase in risk (HR: 1.74; 95% CI: 1.59-1.91) for low-fit individuals with CVD, and 69% increase (HR: 1.69; 95% CI: 1.45-1.96) for those without CVD.

Reference:

Carotid Artery Stenosis

Risk Factors:

  • Age
  • Smoking
  • Diabetes
  • HLD
  • HTN

Surgical candidates:

  • Patients with 50% stenosis of the artery and symptoms
  • Patients with 70% or more stenosis

Risk of stroke during procedure:

  • Open surgery: 2%
  • Trans-Carotid Artery Revascularization (TCAR): between 2-4%
  • Carotid Artery Stenting: 4%

After procedure: ASA or clopidogrel

Chest pain

Decision rule for likelihood of CAD as cause of Chest Pain

Component Points
Age and sex (M > 55yo; F > 65yo) 1
Known vascular disesae (CAD, Occlusive vascular disease, cardiovascular disease) 1
Pain is not elicited with palpation 1
Pain is worse with exercise 1
Patient assumes pain is of cardiac origin 1

Likelihood of CAD as cause of Chest Pain

Score Positive Likelihood Negative Likelihood
0 or 1 1.09 0.00
2 or 3 1.83 0.03
4 or 5 4.52 0.15

References:

  • AFP Vol 96 No 5 Sep 2017

Chest pain causes

Other diagnoses chest pain

  • Non-ischemic cardiovascular
    • Aortic dissection*
    • Myocarditis
    • Pericarditis
  • Chest wall
  • Cervical disc disease
  • Costochondritis
  • Fibrositis
  • Herpes zoster (before the rash)
  • Neuropathic pain
  • Rib fracture
  • Sternoclavicular arthritis
  • Pulmonary
    • Pleuritis
    • Pneumonia
    • Pulmonary embolus*
    • Tension pneumothorax*
  • Psychiatric
    • Affective disorders (eg, depression)
    • Anxiety disorders
    • Hyperventilation
    • Panic disorder
    • Primary anxiety
    • Somatiform disorders
    • Thought disorders (eg, fixed delusions)
  • Gastrointestinal
    • Biliary
    • Cholangitis
    • Cholecystitis
    • Choledocholithiasis
    • Colic
  • Esophageal
    • Esophagitis
    • Spasm
    • Reflux
    • Rupture*
  • Pancreatitis
  • Peptic ulcer disease

    • Nonperforating
    • Perforating*

    *Potentially life-threatening conditions.

  • ACC/AHA/ACP Guidelines for the Management of Patients with Chronic Stable Angina. J Am Coll Cardiol 1999; 33:2092.

Acute Chest Pain: Outpatient Evaluation   edit

Definitions:

  • Typical chest pain or angina is:
    • a deep, poorly localized chest or arm discomfort (pain or pressure) associated with physical exertion or emotional stress and relieved with rest or sublingual nitroglycerin within five minutes.
  • Unstable angina is:
    • new-onset angina, angina at rest, or angina that becomes more frequent, severe, or prolonged.
  • Acute myocardial infarction is:
    • myocardial injury resulting in elevated cardiac biomarkers in the setting of acute ischemia caused by ST segment elevation myocardial infarction or non–ST segment elevation myocardial infarction.

The most common causes of chest pain in the primary care population are:

  • chest wall pain (20% to 50%)
  • reflux esophagitis (10% to 20%)
  • and costochondritis (13%)

Other potential factors include:

  • pulmonary etiologies (pneumonia, pulmonary embolism [PE])
  • psychological etiologies (panic disorder)
  • and nonischemic cardiovascular disorders (congestive heart failure, thoracic aortic dissection)
  • No definitive diagnosis may be found in as many as 15% of patients
Table 5: Predicted Pretest Probabilities of Coronary Artery Disease in Patients with Chest Pain Based on Age, Sex, and Type of Chest Pain
Age range (years) Men     Women    
  Typical Atypical Nonanginal Typical Atypical Nonanginal
40 to 49 69% 38% 25% 37% 14% 8%
50 to 59 77% 49% 34% 47% 20% 12%
60 to 69 84% 59% 44% 58% 28% 17%
70 to 79 89% 69% 54% 68% 37% 24%
> 80 93% 77% 65% 76% 47% 32%

Marburg Heart Score

Table 6: Marburg Heart Score to Predict CAD as a Cause of Chest Pain
Component Points
Sex/age (women > 65 years; men > 55 years) 1
Known clinical vascular disease (CAD, occlusive vascular disease, cerebrovascular disease) 1
Increased pain with exercise 1
Pain not elicited with palpation of chest wall 1
Patient assumes pain is of cardiac origin 1
Table 7: Prevalence of CAD as cause of chest pain given overall population risk of:
Score Likelihood ratio 2.00% 10.00% 20.00%
0 to 1 point 0.04 0.1 0.4 0.9
2 to 3 points 0.92 1.8 9.3 18.8
4 to 5 points 11.2 18.6 55.5 73.7

Nonischemic Causes of Chest Pain

  • Cardiac
    • Acute aortic dissection
    • Heart failure
      • MICE criteria (Male sex, history of myocardial Infarction, basal lung Crepitations, and ankle Edema) likely have heart failure -> Echo
    • Pericarditis
  • Gastrointestinal
    • Gastroesophageal reflux disease
      • A one-week trial of a high-dose proton pump inhibitor is modestly sensitive and specific for GERD, with a 50% reduction in reflux symptoms being moderately accurate for a final diagnosis of GERD (LR+ = 5.5; LR− = 0.24)
  • Musculoskeletal
    • Chest wall pain (33% to 50% of chest pain)
    • Costochondritis
  • Psychological
    • Panic attack
      • In the past four weeks, have you had an anxiety attack (suddenly feeling fear or panic)?
      • This question is good at supporting a diagnosis of panic disorder when patients answer yes (LR+ = 4.2) and is good at ruling it out when the answer is no (LR− = 0.09)
  • Pulmonary
    • Pneumonia
      • Egophony (LR+ = 8.6), dullness to percussion of the posterior thorax (LR+ = 4.3), and respiratory rate greater than 20 breaths per minute (LR+ = 3.5) are suggestive of pneumonia.
      • Normal temperature, heart rate, and respiratory rate with a normal pulmonary examination rules out pneumonia (LR− = 0.10)
    • Pulmonary embolism
      • Wells criteria
      • The Pulmonary Embolism Rule-out Criteria were developed to specifically rule out PE in the primary care setting.46 Patients meeting all eight criteria (50 years or younger, heart rate less than 100 beats per minute, oxygen saturation greater than 94%, no unilateral leg swelling, no hemoptysis, no surgery or trauma within four weeks, no previous deep venous thrombosis or PE, no oral hormone use) have a less than 1% likelihood of PE and thus do not need d-dimer testing or imaging.
Table 8: Wells criteria
Criteria Points
Signs or symptoms of DVT (leg swelling or pain with palpation of deep vein) 3
Diagnosis of PE is more likely than an alternative diagnosis 3
Heart rate > 100 beats per minute 1.5
Immobilization (bed rest > 3 days) or surgery in past 4 weeks 1.5
History of PE or DVT 1.5
Hemoptysis 1
Active malignancy (or cancer treatment stopped in past 6 months) 1
Table 9: Scoring
Total points Risk of PE Probability of PE(overall probability = 9.2%)
0 to 1 point Low 1.3
2 to 6 points Moderate 16.2
More than 6 points High 37.5

Those at low or intermediate risk of ACS can undergo exercise stress testing, coronary computed tomography angiography, or cardiac magnetic resonance imaging

In those with low suspicion for ACS, consider other diagnoses such as chest wall pain or costochondritis, gastroesophageal reflux disease, and panic disorder or anxiety states. Other less common, but important, diagnostic considerations include acute pericarditis, pneumonia, heart failure, pulmonary embolism, and acute thoracic aortic dissection.

The Marburg Heart Score and the INTERCHEST clinical decision rule can also help estimate ACS risk. Twelve-lead electrocardiography is recommended to look for ST segment changes, new-onset left bundle branch block, presence of Q waves, and new T-wave inversions. Patients with suspicion of ACS or changes on electrocardiography should be transported immediately to the emergency department.

References:

  • AFP Vol 102 No 12 Dec 2020

Acute MI

Most useful rule to rule in MI is:

  • Chest pain with radiation to both arms, followed by radiation to the right arm

Most useful elements to rule out MI are:

  • Pleuritic chest pain
  • Sharp pain
  • Pain reproduced with palpation

LOE A

References:

  • AFP Vol 96 No 5 Sep 2017

2hr MI rule out

  • Rule out MI if the max trop evel is <0.014 mcg/L and absolute change over 2hrs is < 0.0004 mcg/L
  • Rule in MI if max trop level is >0.052 mcg/L or the absolute change over 2hrs is >0.009 mcg/L
  • Further observe those not in either category

References:

  • Am J Med 2015;128(4):369-379

Compression Socks   edit

[2023-09-18 Mon 15:07]

Compression stockings are medical grade devices designed to move blood flow.

Support compression stockings are made available in multiple compression support levels.

Most commonly compression support stockings come in:

  • Mild (8-15 mmHg)
    • Provides relief and minimizes tired and achy legs.
    • Prevents fatigued legs from long periods of sitting or standing.
    • Helps relieve minor swelling of feet, ankles, and legs.
    • During pregnancy, helps prevent the formation of varicose and spider veins.
    • Helps maintain healthy, energized legs.
  • Medium (15-20 mmHg)
    • For the prevention and relief of minor to moderate varicose and spider veins.
    • Helps relieve tired, aching legs, and minor swelling of feet, ankles, and legs.
    • During pregnancy, helps prevent varicose veins and spider veins.
    • Helps prevent deep vein thrombosis (DVT), also known as economy class syndrome.
    • Used in post-sclerotherapy treatment to help prevent the reappearance of varicose veins and spider veins.
    • Ideal compression level used for those traveling long distances.
  • Firm (20-30 mmHg)
    • Helps prevent and relieve moderate to severe varicose veins (also during pregnancy).
    • For post-surgical and post-sclerotherapy treatment to help prevent the reappearance of varicose and spider veins.
    • Helps in treatment of moderate to severe edema or lymphatic edema.
    • Helps with the management of active ulcers and manifestations of post-thrombotic syndrome (PTS).
    • Helps relieve superficial thrombophlebitis.
    • Helps prevent orthostatic hypotension (sudden fall in blood pressure when standing).
    • Helps prevent deep vein thrombosis (DVT), also known as economy class syndrome.
  • X-Firm (30-40 mmHg)
    • Helps prevent and relieve severe varicose veins.
    • Used in the treatment of severe edema and lymphedema.
    • Used in post-surgical and post-sclerotherapy treatment to help prevent the reappearance of varicose and spider veins.
    • Helps reduce symptoms of Orthostatic Hypotension and Postural Hypotension
    • For the management of Venous Ulcers and manifestations of Post-Thrombotic Syndrome (PTS).
    • Prevents deep vein thrombosis (DVT), also known as economy class syndrome.
  • Rx (40-50 mmHg)
    • Generally indicated for more Serious Venous Diseases such as Acute Leg/Ankle Swelling, Varicose Veins, Chronic Vein Insufficiency and Deep Vein Thrombosis

Coronary Artery Calcium Score

See also:

The following definitions are used to relate the CAC score to the extent of underlying coronary artery disease (3):

  • Coronary calcium score 0: No identifiable coronary artery disease.
  • Coronary calcium score 1-99: Mild coronary artery disease.
  • Coronary calcium score 101-400: Moderate coronary artery disease.
  • Coronary calcium score > 400: Extensive coronary artery disease.

When interpreting the CAC score, it is essential to consider age and gender. Women, in general, have lower calcium scores than men.

CAC score increases with age. Hence, at a certain age, we will be expected to have a specific CAC score that would be considered normal for that age. This score would then reflect the age of our arteries or the arterial age.

If everything is normal, we would expect our arterial age to be the same as our observed age.

However, if the CAC score is high, our arterial age may be higher than our observed age. Conversely, if our CAC score is low, the arterial age may be lower than our observed age.

Table 10: Estimated Arterial Age and 95% Confidence Intervals by Coronary Artery Calcium Score
CAC Arterial Age in Years (95% CI) CAC Arterial Age in Years (95% CI)
0 39 (32–46) 100 73 (71–74)
10 56 (53–60) 200 78 (75–80)
20 61 (59–63) 300 80 (78–83)
30 64 (62–66) 400 83 (79–86)
40 66 (65–67) 500 84 (80–88)
50 68 (67–69) 750 87 (83–92)
60 69 (68–70) 1000 89 (84–94)
70 70 (69–71) 1500 92 (87–98)
80 71 (70–72) 2000 94 (88–100)
90 72 (71–73) 2500 96 (89–102)

Guidelines for coronary calcium scoring by 2010 ACCF task force

These guidelines are latest at time of writing (July 2016):

  • Intermediate cardiovascular risk and asymptomatic adults (class IIa)
  • Low-to-intermediate risk and asymptomatic adults (class IIb)
  • Low risk and asymptomatic (class III)
  • Asymptomatic adults with diabetes mellitus, 40 years of age and older (class IIa)
CAC Comment
0 May defer statins up to 10 years; Exceptions: severe family history of premature, ASCVD, DM, severe hypercholeserolemia, active tobacco use
1-99 Risk discussion to review options for patient: Risk enhancing factors favor moderate-intensity statin therapy
100-299 Confirms intermediate risk: moderate-intensity statin therapy indicated
300+ Confirms higher risk: high-intensity statin therapy indicated

Reference:

Coronary Artery Disease

Stable coronary artery disease:

  • Reversible supply/demand mismatch related to ischemia, a history of MI, or the presence of plaque documented on catheterization or CTA
  • Stable if asymptomatic or controlled by medications or revascularization
  • No evidence PCPI provides better outcomes than medical therapy for stable mod-severe CAD
    • ISCHEMIA Trial NEJM 4/2020

Treatment:

  • Lifestyle changes
    • 30-60 min of mod-intensity aerobic activity (Reduces cardiovascular mortality - RR=0.74; 95% CI 0.64-0.86)
  • Risk factor modification
  • Antiplatelet and antianginal therapy
    • If NO recent stent placement
      • If no contraindication to ASA -> ASA 75-162mg daily
      • If contraindication to ASA -> Clopidogrel 75mg daily
    • If recent stent placement
      • Dual antiplateley therapy: ASA + P2Y12 (clopidogrel, ticagrelor, or prasugrel)
        • Drug eluting stent -> Continue for 6-12 mo
        • Bare-metal stent -> Continue for 1-12 mo
  • Angina
    • Sublingual NG
    • B-blockers
    • If symptoms not controlled:
      • CCB
      • Long acting nitrate
      • Ranolazine
    • If persistent angina -> Consider CABG or PCI
  • Heart Failure
    • Preserved EF -> Lifestyle modifications
    • Reduced EF:
      • Diuretics
      • B-Blockers
      • ACE inhibitors
      • Angiotensin receptor blockers
      • Lifestyle modifications

References:

  • AFP Vol 97 No 6 Mar 2018

Acute Coronary Syndrome

High likelihood of ACS:

  • Chest pain radiating to one or both arms
  • Chest pain associated with exertion, nausea, vomiting, or diaphoresis
  • Chest pain described as pressure or as "worse than previous angina or similar to a previous MI"

Low likelihood of ACS:

  • Stabbing, pleuritic, or positional chest pain
  • Pain in an inframammary location
  • Pain not associated with exertion
  • Pain is reproducible with palpation

Rule OUT CAD with Marburg Heart Score:

Factor Score
F >64y, M >54y 1 pt
Known CAD, cerebrovascular, or peripheral vascular Dz 1 pt
Pain worse with Ex 1 pt
Pain not reproducible with palpation 1 pt
Patient assumes pain is cardiac 1 pt
  • Score of 2 or less = 98% of pts with no CAD
  • Score >2 -> 23% with CAD

References:

  • JFP Vol 63, No 5 May 2014

Rule to Predict CAD as cause of Chest Pain (Validated)

Give 1 point for each of these:

  • Men >55 or Women >65
  • Known vascular disease (CAD, occlusive vascular, cerebrovascular, etc)
  • Pain worse with exercise
  • Pain not elicited with palpation
  • Patient assumes pain is cardiac origin
Score Pos likelihood Neg likelihood
0 - 1 1.09 0.00
2 - 3 1.83 0.03
4 - 5 4.52 0.16

References:

  • AFP Vol 87 No 3 Feb 2013

Cardiac CT (CCTA)

Indications:

  1. Detection of CAD in symptomatic patients without known heart disease, either nonacute or acute presentations
  2. Detection of CAD in patients with new-onset or newly diagnosed clinical heart failure and no prior CAD
  3. Preoperative coronary assessment prior to noncoronary cardiac surgery
  4. Patients with prior electrocardiographic exercise testing - Normal test with continued symptoms or intermediate risk Duke treadmill score
  5. Patients with prior stress imaging procedures - Discordant electrocardiographic exercise and imaging results or equivocal stress imaging results
  6. Evaluation of new or worsening symptoms in the setting of a past normal stress imaging study
  7. Risk assessment post-revascularization - Symptomatic if post-coronary artery bypass grafting or asymptomatic with prior left main coronary stent of 3 mm or greater
  8. Evaluation of cardiac structure and function in adult congenital heart disease
  9. Evaluation of cardiac structure and function - Ventricular morphology and systolic function
  10. Evaluation of cardiac structure and function - Intracardiac and extracardiac structures

AHA Guidelines:

  • Asymptomatic patients should be assessed for cardiovascular risk using tools such as the Framingham Risk Score; those found to be at low risk (10-year risk of less than 10 percent) or high risk (10-year risk of more than 20 percent) do not benefit from coronary calcium assessment
    • LOE B
  • In clinically selected, intermediate-risk patients (10-year risk of 10 to 20 percent), it may be reasonable to measure the atherosclerosis burden using electron beam CT or multidetector CT to refine clinical risk prediction and to select patients for more aggressive target values for lipid-lowering therapies
    • LOE B
  • Coronary calcium assessment may be reasonable in symptomatic patients, especially in the setting of equivocal treadmill or functional testing
    • LOE B
  • Coronary calcium assessment may be considered in symptomatic patients to determine the cause of cardiomyopathy
    • LOE B
  • Coronary calcium assessment may be considered in patients with chest pain who have equivocal or normal ECG findings and negative cardiac enzyme test results
    • LOE B
  • CT coronary angiography is reasonable for the assessment of obstructive disease in symptomatic patients
    • LOE B
  • Electron beam CT and multidetector CT for detecting restenosis after stent placement cannot be recommended
    • LOE C
  • CT coronary angiography for the assessment of noncalcified plaque or to track atherosclerosis or stenosis over time is not recommended
    • LOE C
  • CT coronary angiography is not recommended in asymptomatic persons for the assessment of occult CAD
    • LOE C
  • Serial imaging for the assessment of coronary calcification progression is not indicated
    • LOE C
  • The use of hybrid scanning to assess cardiovascular risk or the presence of obstructive disease is not recommended
    • LOE C

Calcium Score:

Calcium Score Presence of CAD
0 No evidence of CAD
1-10 Min evidence of CAD
11-100 Mild evidence of CAD
101-400 Mod evidence of CAD
401+ Extensive evidence of CAD

Reference:

Costochondritis and Tietze’s syndrome   edit

[2023-09-12 Tue 10:47]

Table 11: Comparison between costochondritis and Tietze’s syndrome
Characteristics Costochondritis Tietze’s syndrome
Signs of inflammation Absent Present
Swelling Absent Presence or absence indicates severity of problem
Joints affected Multiple and unilateral > 90%. Usually second to fifth costochondral junctions involved Usually single and unilateral. Usually second and third costochondral junctions involved
Prevalence Relatively common Uncommon
Age group affected All age groups, including adolescents and elderly Common in younger age group
Nature of pain Aching, sharp, pressure like Aching, sharp, stabbing initially, later persists as dull aching
Onset of pain Repetitive physical activity provokes pain, rarely occurs at rest New vigorous physical activity such as excessive cough or vomiting, chest impact
Aggravation of pain Movements of upper body, deep breathing, exertional activities Movements
Association with other conditions Seronegative arthropathies, anginal pain No known association
Diagnosis Crowing rooster maneuver and other physical examination findings Physical examination, exclude rheumatoid arthritis, pyogenic arthritis
Imaging studies Chest radiograph, computed tomography scan, or nuclear bone scan to rule out infections or neoplasms if clinically suspected Bone scintigraphy and ultrasonography can be used for screening for other conditions
Treatment Reassurance, pain control, nonsteroidal antiinflammatory drugs, application of local heat and ice compresses, manual therapy with stretching exercises. Corticosteroid or sulfasalazine injections in refractory patients Reassurance, pain control with nonsteroidal antiinflammatory drugs, and application of local heat. Corticosteroid and lidocaine injections to the cartilage, or intercostal nerve block in refractory patients

Reference:

  • Rokicki W, Rokicki M, Rydel M. What do we know about Tietze's syndrome? Kardiochir Torakochirurgia Pol. 2018 Sep;15(3):180-182. doi: 10.5114/kitp.2018.78443. Epub 2018 Sep 24. PMID: 30310397; PMCID: PMC6180027.

CVA

Post-CVA

  • BP Goal: <130/80
  • High dose statin (secondary prevention)

Dual Anti-Platelet Treatment

  • Initiate combined clopidogrel plus aspirin within 24 hours of a minor stroke or TIA and continue for no longer than 1 month; then switch patients to aspirin or clopidogrel monotherapy. LOE A
  • Do not use combined clopidogrel plus aspirin for long-term secondary stroke prevention. LOE A
  • Limit use of aspirin plus extended-release dipyridamole as a first choice for secondary stroke prevention because of limitations in efficacy and poor tolerability. LOE B

References:

  • JFP Jul 2020 Vol 69, No 6

CVA Related Calculators

  • Dual Anti-platelet: DART app
  • ABCD2
  • CHADS2-VASC
  • HAS-BLED
  • SPARC Tool (Stroke/embolism risk)

D-Dimer increased plasma values

  • Plasma acts on Fibrin breaking it into Fibrin Degradation Products (FDPs).
  • One FDP is D-Dimer, which is 2 D domains of fibrin monomeres crosslinked by activated factor XIII.
  • D-dimer is generated from fibrin (NOT fibrinogen) and thus its increase indicates recent or ongoing intravascular coagulation

Associated Disorders:

  1. Arterial thromboembolic disease:
    • Myocardial infarction
    • Stroke
    • Acute limb ischemia
    • Atrial fibrilation
    • Intracardiac thrombus
  2. Venous thromboembolic disease:
    • Deep vein thrombosis
    • Pulmonary embolism
  3. Disseminated intravascular coagulation
  4. Preeclampsia and eclampsia
  5. Abnormal fibrinolysis; use of thrombolytic agents
  6. Cardiovascular disease; congestive failure
  7. Severe infection/sepsis/inflammation
  8. Surgery/Trauma (eg: tissue eschemia, necrosis
  9. Systemic inflammatory response syndrome
  10. Vasoocclussive episode of sickle cell disease
  11. Severe Liver disease (decreased clearance)
  12. Malignancy
  13. Renal disease
  14. Normal pregnancy
  15. Venous malformations

References:

  • UptoDate.com Graphic 60881

Differential Diagnosis and Treatment of Chest Wall Conditions

Condition Diagnostic considerations Treatment principles
Costochondritis Tenderness to palpation of costochondral junctions; reproduces patient's pain; usually multiple sites on same side of chest Simple analgesics; heat or ice; rarely, local anesthetic injections or corticosteroid injections
Destruction of costal cartilage by infections or neoplasm Bacterial or fungal infections or metastatic neoplasms to costal cartilages; infections occur postsurgery or in intravenous drug users; chest computed tomography imaging useful to show alteration or destruction of cartilage and extension of masses to chest wall Antibiotics or antifungal drugs; surgical resection of affected costal cartilage; treatment of neoplasm based on tissue type
Fibromyalgia Symmetric tender points at second costochondral junctions, with characteristic tender points in the neck, back, hip, and extremities and widespread pain Graded exercise is beneficial; cyclobenzaprine (Flexeril), antidepressants, and pregabalin (Lyrica) may be beneficial
Herpes zoster of thorax Clusters of vesicles on red bases that follow one or two dermatomes and do not cross the midline; usually preceded by a prodrome of pain; postherpetic neuralgia is potential complication that is more common in older patients Oral antiviral agents (e.g., acyclovir, famciclovir [Famvir], valacyclovir [Valtrex]); analgesics as needed for pain; may require narcotics or topical lidocaine patches to control pain
Painful xiphoid syndrome Tenderness at sternoxiphoid joint or over xiphoid process with palpation Usually self-limited unless associated with congenital deformity of xiphoid; analgesics; rarely, corticosteroid injections
Slipping rib syndrome Tenderness and hypermobility of anterior ends of lower costal cartilages causing pain at lower anterior chest wall or upper abdomen; diagnosis by "hooking maneuver": curving fingers under costal margin and gently pulling anteriorly—a "click" and movement is felt that reproduces patient's pain Rest, physiotherapy, intercostal nerve blocks; if chronic and severe, surgical removal of hypermobile cartilage segment
Tietze syndrome Single tender and swollen, but nonsuppurative, costochondral junction, usually in costochondral junction of ribs two and three Simple analgesics; usually self-limiting; rarely, corticosteroid injections
Traumatic muscle pain and overuse myalgia History of trauma to chest or recent new onset of strenuous exercise to upper body (e.g., rowing); may be bilateral and affecting multiple costochondral areas; muscle groups may also be tender to palpation Simple analgesics; refrain from doing or reduce intensity of strenuous activities that provoke pain

References:

  • Am Fam Physician. 2021 Jul ;104(1):73-78.

Eating Eggs Is Not Associated with Cardiovascular Disease

Egg consumption is not associated with the occurrence of cardiovascular events over an average of 12 years.

A meta-analysis found that eating more than one egg per day, on average, was associated with a decreased likelihood of coronary artery disease (approximately 11%). This decrease may be due to a healthy user bias; that is, eating eggs may be associated with healthy habits. (Level of Evidence = 2b)

Reference:

  • Am Fam Physician. 2021 Jun 1;103(11):695.

EKG

All EKG interpretations should address:

  • Rate
  • Rhythm
  • Intervals (PR, QRS, ST, QT)
  • Axis
  • P waves
  • Q waves
  • R wave progression
  • T waves
  • Any pathological findings

How I read:

  1. Look at rhythm strip at bottom and count across
    • Gives me: rate, regular vs not, clue into interval abnormalities
  2. Look at I and aVF
    • Gives me: axis deviation
  3. Look at V1 and II
    • gives me atrial pathology - RAE/LAE

3b) If regular rate, look at aVR

  • Gives me sinus vs ectopic focus (with caveats)
  1. Scan for Q waves (not abnormal if only in III)
  2. Look at R wave progression in V1-V6
    • Gives me: clues to LVH/RVH, BBB's, ideas extent of injury if actual MI
  3. Scan for T wave abnormalities (not unusual to find odd T's in III)

Other thoughts:

  • Sinus vs not sinus: sinus rhythm implies from sinus node - should be negative in aVR, positive everywhere else, not changing in morphology
  • Regular vs sinus arrhythmia: While no widely accepted standard values exist, I was taught there should be less than 0.04 beat-to-beat variability and that is what I use to determine regular or not regarding heart rate variability

Favorite learning resources:

Frequent symptomatic PVCs

  1. Step 1: Rule out hypothyroidism
  2. Step 2: Management
    • First line:
      • Metoprolol succinate (longer acting than tartrate)

Heart Failure

Framingham Diagnostic Criteria (Need 2 Major or 1 Major and 2 Minor):

  • Major
    • Acute pulmonary edema
    • Cardiomegaly
    • Hepatojugular reflex
    • Neck vein distension
    • Paroxysmal nocturnal dyspnea or orthopnea
    • Rales
    • Third heart sound gallop
  • Minor
    • Ankle edema
    • Dyspnea on exertion
    • Hepatomegaly
    • Nocturnal cough
    • Pleural effusion
    • Tachycardia >120bpm

Stages of Heart Failure

  1. Stage A - (At risk of HF)
    • At high risk of heart failure, but without structural heart disease or symptoms of HF
    • Therapy Goals:
      • Treat HTN / Lipids
      • Smoking cessation
      • Regular Excercise
      • Discourage EtOH intake and illicits
      • Control metabolic syndrome
    • Therapy Management:
      • ACE I or ARB in appropriate patients for vascular disease or diabetes
      • Statins when indicated
      • Consider SGLT-2 inhibitors in patients with DM
  2. Stage B (At risk of HF)
    • Sturctural heart disease, but without signs or symptoms of HF
    • Therapy Goals:
      • Prevent HF symptoms and worsening of cardiac remodeling
    • Therapy Management:
      • ACE I or ARB in appropriate patients
      • B-Blocker in appropriate patients
      • Select patients:
        • ICD
        • Revascularization or valvular surgery
  3. Stage C (HF)
    • Structural heart disease with prior or current symptoms of HF
    • Therapy Goals:
      • Control symptoms
      • Patient education
      • Prevent hospitalization
      • Prevent mortality
    • Therapy Management:
      • Diuretics for fluid retention
      • ACE I or ARB
      • B-Blocker
      • Aldosterone antagonists
      • In selected patients:
        • Angiotensin receptor-neprilysin inhibitor
        • Digitalis
        • Isosorbide dinitrate/hydralazine
        • Cardiac resynchronization therapy
        • ICD
        • Revascularization or valvular surgery
  4. Stage D (HF)
    • Refractory HF requireing specialized intervention
    • Therapy Goals:
      • Control symptoms
      • Improve quality of life
      • Reduce hospital admissions
      • Establish end-of-life goals
    • Therapy options:
      • Compassionate end-of-life care/hospice
      • Deactivate ICD
      • Extraordinary measures:
        • Heart transplantation
        • Chronic inotropes
        • Temporary or permanent mechanical support
        • Experimental surgery or drugs

References:

  • AFP Vol 96 No 10 Nov 2017
  • AFP Vol 96 No 9 Nov 2017
  • AFP Sep 2023 Vol 108 No 3

HFrER

(EF <40)

  • NonInvasive Disease Modifying Rx:
    • ACE/ARB
    • Beta-blocker
    • Aldosterone antagonist
    • Hydralazine/ISDN
    • Ivabradine
    • Valsartan/Sacubitril
  • Sx modifying Rx
    • Diuretics
    • Digoxin
  • Common Modifiable Comorbidities
    • Anemia
    • HTN
    • T-4
    • Thiamine
    • Alcohol
    • COPD
    • CAD
  • Lifestyle and Immunizations
    • Na+/H2O
    • Weight
    • Exercise
    • Flu vaccine
    • PneumoVax

Reference:

  • 2019 Spring FAFP

Medications

Best Beta blockers for heart failure

  • Three beta-blockers reduce mortality equally (by about 30% over one year) in patients with Class III or IV systolic heart failure.
    • carvedilol
    • metoprolol succinate
    • bisoprolol
  • Insufficient evidence exists comparing equipotent doses of these medications head-to-head to recommend any one over the others (strength of recommendation [SOR]: A, systematic review/meta-analysis).

References:

  • J Fam Pract. 2015 February;64(2):122-123.

Henoch-Schonlein Purpura - HSP

Diagnostic Criteria

  • At least 2 of the following:
    • Palpable purpura (mandatory)
    • Age =< 20y at disease onset
    • Abdominal pain or GI bleeding
    • Vessel wall granulocytes on biopsy
  • Plus 1 of the following
    • Abdominal pain
      • Diffuse and colicky
    • Histopathology
      • Leukocytoclastic vasculitis or proliferative glomerulonephritis with predominant IgA deposition
    • Arthritis or arthralgia
      • Acute-onset joint pain or swelling
    • Kidney involvement
      • Proteinuria or hematuria

References:

  • Consultant Oct 2016

HTN BP Targets

  • BP targets of 140/90 mmHg offer similar reduction in CV and all-cause mortality as lower targets and have fewer adverse effects
  • Lower BP targets lead to a reduction in MI with NNT of 137 over 3.7 years
  • Based on mortality - primary goal is < 140/90
  • Lower BP leads to fewer MI, so might be beneficial trade for some

Reference:

  • AFP Vol 106 No 6 Dec 2022

Hyperlipidemia

See also:

4 Statin Benefit Groups (2018 ACC Guidelines)

  1. A nonfasting plasma lipid profile can be obtained to estimate ASCVD risk and document baseline LDL-C in adults 20 years and older who are not on lipid-lowering therapy.
  2. Maximally tolerated statin therapy is recommended for patients 20 to 75 years of age with an LDL-C level of 190 mg per dL or greater.
  3. Moderate-intensity statin therapy should be initiated without calculating a 10-year ASCVD risk for patients 40 to 75 years of age with diabetes mellitus.
  4. Patients without diabetes at intermediate risk of ASCVD with LDL-C levels of 70 to 189 mg per dL should be treated with a moderate-intensity statin for a goal of 30% or greater reduction in LDL-C levels.
Table 12: Statin intensity:
High intensity Moderate intensity
Atorvastatin 40-80mg Atorvastatin 10-20mg
Rosuvastatin 20-40mg Fluvastatin XL 80mg
  Lovastatin 40mg
  Pitavastatin 40-80mg
  Pravastatin 40-80mg
  Rosuvastatin 5-10mg
  Simvastatin 20-40mg

Selected examples of candidates for coronary artery calcium measurement who might benefit from knowing cac score is zero:

  1. Patients reluctant to initiate statin who wish to understand their risk and potential for benefit more precisely
  2. Patients concerned about need to re-institute statin therapy after discontinuation for statin associated symptoms
  3. Older patients (men 55 to 80; women 60-80 years old) with low burden of risk factors who question whether they would benet from statin therapy
  4. Middle-aged adults (40-55 years old) with PCE calculated 10-year risk for ASCVD 5 to <7.5% with factors that increase their ASCVD risk, even though they are in a borderline risk group

References:

Lipid Lowering Is Beneficial for Secondary Prevention but Not Primary Prevention in Patients 75 Years and Older

This meta-analysis inappropriately conflates studies of primary and secondary prevention, and the authors argue that their data support the use of lipid-lowering drugs in older adults. That may be true for secondary prevention, but it is clearly not proven for primary prevention. The STAREE trial is currently recruiting 18,000 older adults and randomizing them to receive atorvastatin (Lipitor), 40 mg, or placebo, and it will hopefully provide greater clarity about the use of lipids for primary prevention (results expected in 2023). (Level of Evidence = 1a−)

Reference:

  • Am Fam Physician. 2021 Jun 1;103(11):695-696.

Hypertriglyceridemia

Prescribe fibrates and omega-3 fatty acids for patients with triglyceride levels of 500 mg per dL (5.65 mmol per L) or higher to reduce the risk of pancreatitis.

Fasting serum triglyceride levels of 150 mg per dL or higher

Risk factors

  • Obesity
  • Metabolic syndrome
  • Type 2 diabetes mellitus
  • Excessive alcohol use
  • Physical inactivity
  • Excess weight
  • Use of certain medications
  • Genetics

Management of high triglyceride levels (150 to 499 mg per dL)

  • Dietary changes
    • Lower carbohydrate intake (especially refined carbohydrates)
    • Increase fat (especially omega-3 fatty acids) and protein intake
  • Physical activity
    • Moderate- to high-intensity physical activity (>6 METS)

Pancreatitis:

  • Severely elevated triglyceride levels (500 mg per dL or higher) increase the risk of pancreatitis
  • For patients with acute pancreatitis associated with hypertriglyceridemia:
    • Insulin infusion and plasmapheresis should be considered if triglyceride levels remain at 1,000 mg per dL or higher

Reference:

Repatha

ACC/AHA guideline defines very high risk (VHR) as multiple major ASCVD events OR one major ASCVD event and multiple high-risk conditions.1

According to a recent study of 27,775 patients with a history of ASCVD in the Journal of the American College of Cardiology, more than half of ASCVD patients met VHR criteria.2

Of those:

26% of very high-risk patients had multiple major ASCVD events2

  • Recent ACS (within 12 months)
  • History of:
    • Ml (other than recent ACS above)
    • Ischemic stroke
    • Symptomatic PAD

74% of very high-risk patients had a major ASCVD event AND multiple high-risk conditions2

  • Age ≥65 years
  • Hypertension
  • Diabetes mellitus
  • Persistent LDL-C ≥100 mg/dL despite max-tolerated statin and ezetimibe
  • HeFH
  • CKD
  • Smoking
  • Prior CABG or prior PCI
  • Congestive heart failure

Hypertension

See: JNC 8

BP Goal:

  • AAFP/ACP:
    • Treatment recommended for Adults 60+ with SBP >150 mmHg with target <150 mmHg to reduce risk of stroke, cardiac events, and possibly mortality (strong evidence)
    • Remember: 60-150-140
      • Patients >60yo, consider treatment is SBP is >150mmHg or >140mmHg if they have a history of stroke or in a high cardiovascular risk
  • ACC/AHA:
    • Treatment recommended for noninstitutionalized, ambulatory, community-dwelling adults 65+ with avg SBP of 130+ mmHg with target < 130
    • No statistically significant benefit to all-cause mortality, CVD mortality, heart failure, or renal events when the lower BP cutoff was used (130/80) and the difference for fatal or nonfatal myocardial infarction was borderline nonsignificant.

Timing of anti-hypertensives:

  • Take a bedtime as significant reduction in mortality and morbidity for once-daily anti-hypertensives (LOE = 1b-)
    • NNT 20.3

Targets:

  • Acute intrecerebral hemorrhage
    • If SBP >220 within 6 hrs of event - continuous drug infusion and close BP monitoring
    • If SBP 150-220 within 6 hrs of event - immediate lowering below 140 mmHg is potentially harmful
  • Acute ischemic stroke
    • <185/110 before administration of IV tPA
    • <185/105 for at least 24 hrs after initiating drug therapy
  • Post CVA
    • <130/80
  • Chronic kidney disease
    • <130/80
  • Diabetes mellitus
    • <130/80
    • ACE-I or ARB
  • Heart failure
    • With preserved EF: <130 systolic
    • With reduced EF: <130/80
  • Kidney transplant
    • <130/80
  • Stable ischemic heart disease
    • <130/80

Key Elements of Office BP Assessment:

  • Patient should avoid caffeine, exercise, and smoking for at least 30min before the visit
  • Patient should relax, sitting in a chari, with feet on floor and back supported for at least 5 min
  • Patient should have empty bladder
  • There should be no talking during the rest period and measurement
  • No clothing covering the area where the cuff is placed
  • Correct cuff size
  • Patient arm should be supported
  • Middle of the cuff should be on the patient upper arm at the level of the right atrium
  • Seperate repeaated meaurements by 1 to 2 min
  • Take the average of at least 2 measurements

Resources:

References:

  • AFP Vol 97 No 6 Mar 2018
  • AFP Vol 97 No 9 May 2018

Ambulatory Blood Pressure

From USPSTF Recommendations:

  • The USPSTF found convincing evidence that ABPM is the best method for diagnosing hypertension. Although the criteria for establishing hypertension varied across studies, there was significant discordance between the office diagnosis of hypertension and 12- and 24-hour average blood pressures using ABPM, with significantly fewer patients requiring treatment based on ABPM. Elevated ambulatory systolic blood pressure was consistently and significantly associated with increased risk for fatal and nonfatal stroke and cardiovascular events, independent of office blood pressure. For these reasons, the USPSTF recommends ABPM as the reference standard for confirming the diagnosis of hypertension.

Reimbursement:

  • 93784 - Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; including recording,

scanning analysis, interpretation and report - $54.62

Other notes:

  • Only 68% of Medicare claims for ambulatory blood pressure are reimbursed.
  • Claims are likely to be reimbursed if the ICD-9 diagnosis code 796.2 is included.
  • Less than 30% of claims without a 796.2 diagnosis code were reimbursed.
  • The median reimbursement amount for an ABPM procedure was $52.01

Guidelines for taking home blood pressure

These are the guidelines for taking blood pressure:

  • Avoid caffeinated or alcoholic beverages 30 minutes beforehand.
  • Sit quietly for five minutes with your back supported and your legs uncrossed.
  • Support your arm, so your elbow is at or near heart level.
  • Wrap the cuff over bare skin.
  • Don't talk during the measurement.
  • Leave the deflated cuff in place, wait a minute, then take a second reading. If the readings are close, average them. If not, repeat and average the three readings.

JNC 8

Start all new diagnosed HTN with:

  1. valsartan/hctz (Walmart cheap combo)
    • QUARTET Study from Lancet 2021 Sep 18; 398:1043

Choice Priority of initial agent:

  • Black:
    1. Thiazide
    2. CCB
    3. ACE or ARB
  • Nonblack:
    1. Thiazide
    2. CCB
    3. ACE or ARB
  • CKD:
    1. ACE or ARB
    2. Thiazide
    3. CCB
Indication Treatment Choice
Heart Failure ACEI/ARB+BB + diuretic +spironolactone
Post–MI/Clinical CAD ACEI/ARB AND BB
CAD ACEI, BB, diuretic, CCB
Diabetes ACEI/ARB,CCB, diuretic
CKD ACEI/ARB
Recurrent stroke prevention ACEI,diuretic
Pregnancy labetolol (first line),nifedipine, methyldopa

Beta-1 Selective Beta-blockers –possibly safer in patients with COPD, asthma, diabetes, and peripheral vascular disease:

  • metoprolol
  • bisoprolol
  • betaxolol
  • acebutolol
Drug Class Agents ofChoice Comments
Diuretics HCTZ 12.5-50mg,chlorthalidone 12.5-25mg, indapamide 1.25-2.5mg, triamterene 100mg; K+ sparing –spironolactone 25-50mg, amiloride5-10mg, triamterene 100mg; furosemide 20-80mg twice daily, torsemide10-40mg Monitor for hypokalemia; Most SE are metabolic in nature; Most effective when combined w/ ACEI; Stronger clinical evidence w/chlorthalidone; Spironolactone -gynecomastia and hyperkalemia; Loop diuretics may be needed when GFR <40mL/min
ACEI/ARB ACEI: lisinopril,benazapril, fosinopril and quinapril 10-40mg, ramipril 5-10mg, trandolapril 2-8mg; ARB: candesartan 8-32mg, valsartan 80-320mg, losartan 50-100mg, olmesartan 20-40mg, telmisartan 20-80mg SE:Cough (ACEI only), angioedema (more with ACEI), hyperkalemia; Losartan lowers uric acid levels; candesartan may prevent migraine headaches
Beta-Blockers metoprolol succinate 50-100mg and tartrate 50-100mg twice daily, nebivolol 5-10mg, propranolol 40-120mg twice daily, carvedilol 6.25-25mg twice daily, bisoprolol 5-10mg, labetalol 100-300mg twice daily Not firstline agents –reserve for post-MI/CHF; Cause fatigue and decreased heart rate; Adversely affect glucose; mask hypoglycemic awareness
Calcium channel blockers Dihydropyridines: amlodipine 5-10mg, nifedipine ER 30-90mg; Non-dihydropyridines: diltiazem ER 180-360 mg,verapamil 80-120mg 3 times daily or ER 240-480mg Cause edema; dihydropyridines may be safely combined w/ B-blocker; Non-dihydropyridines reduce heart rate and proteinuria
Vasodilators hydralazine 25-100mg twice daily, minoxidil 5-10mg terazosin 1-5mg, doxazosin 1-4mg given at bedtime Hydralazine and minoxidil may cause reflex tachycardia and fluid retention –usually require diuretic + B-blocker; Alpha-blockers may cause orthostatic hypotension
Centrally-acting Agents clonidine 0.1-0.2mg twice daily, methyldopa 250-500mg twice daily guanfacine 1-3mg Clonidine available in weekly patch formulation for resistant hypertension

Key Points:

  • In the general population, pharmacologic treatment should be initiated when blood pressure is 150/90 mm Hg or higher in adults 60 years and older, or 140/90 mm Hg or higher in adults younger than 60 years.
  • In patients with hypertension and diabetes, pharmacologic treatment should be initiated when blood pressure is 140/90 mm Hg or higher, regardless of age.
  • Initial antihypertensive treatment should include a thiazide diuretic, calcium channel blocker, ACE inhibitor, or ARB in the general nonblack population or a thiazide diuretic or calcium channel blockerin the general black population.
  • If the target blood pressure is not reached within one month after initiating therapy, the dosage of the initial medication should be increased, or a second medication should be added.

References:

Pediatric Hypertension

Stages:

Blood Pressure Diagnosis
SBP and DBP <90th% Normal
SBP or DBP 90-95% or >120/80 Pre-HTN
SBP or DBP >99% Stage 1 HTN
SBP or DBP >99% +5mmHg Stage 2 HTN
  • Reassess BP every 6mo for Pre-HTN
  • Reassess BP every 2 wks for stage 1 HTN
  • When BP remains <90th%, routine surveillance every 3-6mo
  • Pediatric patients with Stage 2 HTN should not participate in high-static sports until BP is well controlled.

Possible causes of secondary pediatric HTN:

  • Chronic kidney disease
  • Renovascular hypertension
  • Pheochromocytoma
  • Primary aldosteronism
  • Cushing's syndrome
  • Aortic coarctation
  • Genetics
  • Drug-induced
  • Hyperthyroidism
  • Congenital adrenal hyperplasia
  • Obstructive sleep apnea

References:

  • JFP Vol 63 No 3 Mar 2014

Primary Hypertension

  • HTN Classification Scale
    Class SBP DBP
    Normal <120 <80
    Pre-HTN 120-139 80-90
    Stage 1 HTN 140-159 90-99
    Stage 2 HTN >160 >100

    References:

    • JFP Vol 65 No 1 Jan 2016
  • HTN - Work up for secondary causes

    It is recommended that all children and adolescents with a new diagnosis of hypertension undergo renal ultrasound and laboratory evaluation for renal pathology (strength of recommendation [SOR]: C, consensus-based guidelines).

    Specific diagnostic tests are recommended for newly diagnosed patients who have suspicious clinical findings suggestive of a secondary cause of hypertension based on the initial history (excess daytime sleepiness, palpitations, tremor, sweating); physical examination (abdominal bruit, thyromegaly, malar rash); or laboratory analysis (elevated serum creatinine, low thyroid-stimulating hormone) (SOR: C, consensus-based guidelines).

    Patients with undifferentiated resistant hypertension should receive further directed evaluation for secondary causes (SOR: C, consensus-based guidelines).


    Children:

    Secondary hypertension is more prevalent in younger children and in children and adolescents with stage 2 hypertension (blood pressure [BP] >99th percentile for age and height plus 5 mm Hg).1 Renoparenchymal and renovascular disease account for most cases of secondary hypertension in these children.

    70% to 85% of children <12 years and 10% to 15% of adolescents 12 to 18 years with hypertension have an underlying cause, most commonly renoparenchymal and renovascular disease.

    Such evaluation should include a renal ultrasound and laboratory testing (creatinine, urinalysis, and urine culture) to look for structural or functional anomalies.

    Adults:

    Secondary hypertension reportedly occurs in 5% to 10% of hypertensive patients.

    Patients at highest risk for secondary hypertension have no family history of hypertension; abrupt onset, symptomatic, or crisis hypertension; stage 2 hypertension; sudden loss of hypertensive control; and drug-resistant hypertension.

    The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure recommends that patients with the following characteristics undergo further directed evaluation for a secondary cause:8

    • younger than 30 years with no family history of hypertension
    • older than 55 years with new hypertension
    • abdominal bruit with diastolic component
    • sudden worsening of BP control
    • recurrent flash pulmonary edema
    • renal failure with abnormal urinary sediment or proteinuria
    • acute renal failure after administration of an ACE inhibitor or ARB.

    Patients with resistant hypertension (BP>140/90 mm Hg despite taking optimal doses of 3 antihypertensive medications, one of which is a diuretic) should receive particular scrutiny for an identifiable secondary cause.

    References:

    • J Fam Pract. 2014 January;63(1):41-42,54.
  • Hypertensive Emergency Medications per Target Organs
    • Neurologic (do not increase IOP)
      • Nicardipine or clevidipine
      • Labetalol
    • Aortic (reduce dP/dtmax without reflex tachycardia and inotropy)
      • Esmolol
      • Nitroprusside (only as add-on after effective B-blockade)
      • Nicardipine or clevidipine (only as add-on after effective B-blockade)
    • Cardiac (do not potentiate ischemia or heart failure)
      • Acute MI
        • Nitroglycerin
        • Esmolol
        • Metoprolol
      • HF
        • Nitroglycerin
        • Furosemide
        • Nitroprusside
    • Renal (not renally cleared or nephrotoxic)
      • Acute Kidey Injury
        • Nicardipine or clevidipine
        • Labetalol
      • Scleroderma renal crisis
        • Oral captopril
    • Pregnancy (not toxic to fetus)
      • Hydralazine
      • Labetalol
      • Oral Nifedipine

    References:

    • Consultant Mar 2016
  • Lab workup
    1. EKG
    2. Glu
    3. Lipids
    4. GFR
    5. H/H
    6. Calcium
    7. K
    8. UA
  • Lifestyle effects on BP:
    Lifestyle SBP DBP
    DASH with Na rest 11.5 5.7
    Na rest (<1500mg/day) 7 3
    DASH 5-6 3
    Wt loss (9lbs/4kg) 4.5 3.2
    Exercise 4 3
    Restriction of EtOH 3 2

    References:

    • AFP Vol 91 No 3 Feb 2015
  • Lifestyle modifications

    From ACC/AHA 2013 Lifestyle Work Group

    • Diet: Rich in vegetables, fruits, and whole grains, including low-fat dairy, poultry, fish, legumes, nuts, and nontropical vegetable oils - such as DASH or AHA diets
    • Salt consumption: <2400mg/d … Ideal is <1500mg/d
    • Regular exercise: Moderate to vigorous aerobic activity 3-4 times a week averaging 40min/session

    DASH

    • >4.5 cups of fruit and vegetables daily
    • >2 3.5oz servings of fish per week (prefer oily fish)
    • >3 1oz eq servings of fiber rich whole grains daily (1.1g of fiber per 10g carb)
    • <1500mg Na daily
    • <450 calories of sugar sweetened beverages per week (do not drink these!)

    Components of DASH:

    • Total fat: 27% of calories
      • Saturated fat: 6% of calories
    • Protein: 18% of calories
    • Carbohydrates: 55% of calories
    • Cholesterol: 150 mg
    • Fiber: 30 g
    • Sodium: 1,500 mg
    • Potassium: 4,700 mg
    • Calcium: 1,250 mg
    • Magnesium: 500 mg

    References:

    • JFP Vol 63, No 10 Oct 2014
    • AFP Vol 91 No 3 Feb 2015
    • AFP Vol 93 No 11 Jun 2016
  • Medications
    • Use ARBs over ACEs
      • There is no difference in efficacy between ARBs and ACE inhibitors with regard to the surrogate endpoint of blood pressure and outcomes of all-cause mortality, cardiovascular mortality, myocardial infarction, heart failure, stroke, and end-stage renal disease.
      • However, ACE inhibitors remain associated with cough and a very low risk of angioedema and fatalities.
      • Overall withdrawal rates because of adverse events are lower with ARBs than with ACE inhibitors.
      • Given the equal outcome efficacy but fewer adverse events with ARBs, risk-to-benefit analysis in aggregate indicates that at present there is little, if any, reason to use ACE inhibitors for the treatment of hypertension or its compelling indications.

    Reference: https://www.ncbi.nlm.nih.gov/pubmed/29598869

    Table 13: Thiazides
    Medication T1/2 Equiv Dose
    Hydrochlorothiazide 8-15h 25mg
    Chlorthalidone 45-60h 12.5mg
    Indapamide 14-25h 2.5mg
    • Thiazide Notes:
      • CTD and indapamide have outcome data with clear benefit in reducing cardiovascular events compared to HCTZ (which has a lack of outcome data)
      • CTD and indapamide both better meet 24hr BP control given their pharmacokinetic profiles
      • Cost is comparable among all 3 - Do not use HCTZ as monotherapy for HTN
    • Spironolactone
      • Consider use when thiazide, ACE I or ARB, and CCB fails to achieve target blood pressure (SOR C)
      • For most adults with resistant HTN, spironolactone is superior to doxazosin and bisoprolol as an adjunct to triple therapy

    References:

Protocol for home BP

  • Avoid exercise, caffeine, and other stimulants 30min before measurement
  • Avoid restrictive clothing
  • Use appropriately sized cuff
  • Rest quietly before and during BP measurement
  • Position arm at heart level
  • Do not talk while the machine is measuring

References:

  • AFP Vol 76 No 2 Jul 2007

Orthostatic Blood Pressure

Diagnostic if:

  • Systolic is <90mm Hg or decrease by 20mm Hg or more (10mm Hg in symptomatic patients)
  • Increase of 30bpm suggests postural tachycardia syndrome

Process:

  • 1 min after changing positions from supine to standing drop in systolic BP of 20 mm hg
  • 3 min after changing position drop in systolic BP of 20mm hg or drop in diastolic BP of 10mm hg
  • Pulse will often rise, but not diagnostic in and of itself.

Treatments:

  • Physical maneuvers:
    • Getting up slowly
    • Leg cfrossing
    • Muscle clenching
  • Increased salt and water intake
  • Compression stockings
  • Medications:
    • fludrocortisone
    • midodrine
  • Avoidance of medications:
    • Benzodiazepines
    • diuretics

Notes:

  • 6% of General population
  • Up to 40% of asymptomatic older adults (70+yo) and 23% younger than 60yo will have positive orthostatic BP measurements
  • Associated with:
    • Risk of falls (HR = 1.5)
    • Coronary heart disease (HR = 1.3)
    • Stroke (HR = 1.2)
    • All cause mortality (HR = 1.4)

References:

  • AFP Vol 95 No 5 Mar 2017
  • JFP Vol 68 No 9 Nov 2019

Screening indications

  • Age >40
  • For those 18-39:
    • Obesity/Overweight
    • African American ethnicity
    • High-normal BP (130-139/85-89mmHg)

References:

  • JFP Vol 65, No 1 Jan 2016

Secondary Hypertention

Indications to evaluate for secondary HTN:

  • Acute rise in BP in pt with previous stable BP
  • Age of onset before puberty
  • Age younger than 30yo in nonobese, nonblack with no FH of HTN
  • Malignant or accelerated HTN
  • Severe or resistant HTN

Causes of Secondary HTN

Age % with 2ry HTN Most Common Etiologies
Birth-11yo 70-85% Renal parencchymal disease
    Coarctation of the aorta
12-18yo 10-15% Renal parencchymal disease
    Coarctation of the aorta
19-39yo 5% Thyroid dysfunction
    Fibromuscular dysplasia
    Renal parencchymal disease
40-64yo 8-12% Hyperaldosteronism
    Thyroid dysfunction
    Obstructive Sleep Apnea
    Cushing syndrome
    Pheochromocytoma
65yo+ 17% Atherosclerotic renal artery stenosis
    Renal failure
    Hypothyroidism

Secondary forms of HTN associated with resistant HTN

Condition Prevalence in Resistant HTN
Obstructive sleep apnea 60-70%
Primary aldosteronism 7-20%
Renal artery stenosis 2-24%
Renal parenchymal disease 1-2%
Drug induced or heavy EtOH 2-4%
Thyroid disorders <1%

Evaluation

Birth-18yo 19-39yo 40-64yo 65yo+
Urinalysis MRA with contrast Renin Renal Art Dopple
Urine culture CT Angio if no MRI Aldosterone MRA with contrast
Renal Ultrasonography TSH Polysomnography CT angio if no MRI
+/- Echo +/- Echo +/- 24-hr urinary free cortisol TSH
    +/- 24-hr urinary fract metanephrines Urinalysis
      +/- 24-hr urinary free cortisol
      +/- 24-hr urinary fract metanephrines

Drugs that can elevate BP

Class Examples
Anti-infective Ketoconazole
Anti-inflammatory COX-2 inhib, NSAIDs
Chemotherapeutic Vascular endothelial growth factor inhib
Herbal Ephedra, ginseng, ma huang
Illicits Amphetamines, cocaine
Immunosuppressive Cyclosporine, sirolimus, tacrolimus
Psychiatric Buspirone, carbamazepine, MAOI, SSRI, SNRIs, TCAs
Sex hormones Estroge and progesterone in OCPs, androgens
Steroid Methylprednisolone, prednisone
Sympathomimetic Decongestants, diet pills

References:

  • AFP Vol 96 No 7 Oct 2017
  • JAMA Vol 311 No 21 Jun 2014

Lymphadenopathy   edit

[2023-10-05 Thu 16:38]

Differential Dx:

  • Malignancies
    • Kaposi sarcoma, leukemias, lymphomas, metastases, skin neoplasms
  • Infections
    • Bacterial: brucellosis, cat-scratch disease (Bartonella), chancroid, cutaneous infections (staphylococcal or streptococcal), lymphogranuloma venereum, primary and secondary syphilis, tuberculosis, tularemia, typhoid fever
    • Granulomatous: berylliosis, coccidioidomycosis, cryptococcosis, histoplasmosis, silicosis
    • Viral: adenovirus, cytomegalovirus, hepatitis, herpes zoster, human immunodeficiency virus, infectious mononucleosis (Epstein-Barr virus), rubella
    • Other: fungal, helminthic, Lyme disease, rickettsial, scrub typhus, toxoplasmosis
  • Autoimmune disorders
    • Dermatomyositis, rheumatoid arthritis, Sjögren syndrome, Still disease, systemic lupus erythematosus
  • Miscellaneous/unusual conditions
    • Angiofollicular lymph node hyperplasia (Castleman disease), histiocytosis, Kawasaki disease, Kikuchi lymphadenitis, Kimura disease, sarcoidosis
  • Iatrogenic causes
    • Medications, serum sickness
Historical clues Suggested diagnoses Initial testing
Fever, night sweats, weight loss, or node located in supraclavicular, Leukemia, lymphoma, solid CBC, nodal biopsy or bone marrow
popliteal, or iliac region, bruising, splenomegaly tumor metastasis biopsy; imaging with ultrasonography
    or computed tomography may be
    considered but should not delay
    referral for biopsy
Fever, chills, malaise, sore throat, nausea, vomiting, diarrhea; no other red Bacterial or viral pharyngitis, Limited illnesses may not require any
flag symptoms hepatitis, influenza, additional testing; depending on
  mononucleosis, tuberculosis (if clinical assessment, consider CBC,
  exposed), rubella monospot test, liver function tests,
    cultures, and disease-specific
    serologies as needed
High-risk sexual behavior Chancroid, HIV infection, HIV-1/HIV-2 immunoassay, rapid
  lymphogranuloma venereum, plasma reagin, culture of lesions,
  syphilis nucleic acid amplification for
    chlamydia, migration inhibitory factor
    test
Animal or food contact    
Cats Cat-scratch disease (Bartonella) Serology and polymerase chain reaction
  Toxoplasmosis Serology
Rabbits, or sheep or cattle wool, hair, Anthrax Per CDC guidelines
or hides    
  Brucellosis Serology and polymerase chain
    reaction
  Tularemia Blood culture and serology
Undercooked meat Anthrax Per CDC guidelines
  Brucellosis Serology and polymerase chain
    reaction
  Toxoplasmosis Serology
Recent travel, insect bites Diagnoses based on endemic Serology and testing as indicated by
  region suspected exposure
Arthralgias, rash, joint stiffness, fever, chills, muscle weakness Rheumatoid arthritis, Sjögren Antinuclear antibody, syndrome, dermatomyositis, anti-doubled-stranded DNA, systemic lupus erythematosus erythrocyte sedimentation rate, CBC, rheumatoid factor, creatine kinase, electromyography, or muscle biopsy as indicated

Medications causing lymphadenopathy:

  • Allopurinol
  • Atenolol
  • Captopril
  • Carbamazepine (Tegretol)
  • Gold
  • Hydralazine
  • Penicillins
  • Phenytoin (Dilantin)
  • Primidone (Mysoline)
  • Pyrimethamine (Daraprim)
  • Quinidine
  • Trimethoprim/sulfamethoxazole
  • Sulindac

Risk factors for malignancy:

  • Age older than 40 years
  • Duration of lymphadenopathy greater than four to six weeks
  • Generalized lymphadenopathy (two or more regions involved)
  • Male sex
  • Node not returned to baseline after eight to 12 weeks
  • Supraclavicular location
  • Systemic signs: fever, night sweats, weight loss, hepatosplenomegaly
  • White race

Reference:

  • Am Fam Physician. 2016;94(11):896-903

Lymphedema

Primary lymphedema is often classified by the age of the patient at onset of the edema.

  • Congenital lymphedema occurs at birth or within the first two years of life.
    • Although the edema can involve a single lower extremity, it also occurs in multiple limbs, the genitalia and, sometimes, the face.
    • Bilateral edema of the lower extremities is more common in congenital lymphedema than in any other form of primary lymphedema.
    • It may be transmitted in an autosomal dominant pattern, when cluster cases are found in families.
  • Lymphedema praecox, the most common form of primary lymphedema, occurs around puberty or in young adults. In most cases, edema is evident in one foot and calf.
  • Lymphedema tarda occurs in patients 35 years or older and is uncommon.

Secondary lymphedema, more common than the primary form, usually develops following disruption or obstruction of lymphatic pathways associated with a disease process, or following surgery or radiotherapy.

  • Worldwide, filariasis is the most common cause of secondary lymphedema.
  • In the United States, the most common secondary lymphedema develops in the upper extremity following axillary lymph node dissection.

Classic characteristics of early lymphedema versus other chronic edematous states of the extremities include

  • subcutaneous fibrosis (peau d'orange)
  • the Stemmer sign (inability to tent the skin on the dorsum of the toes or digits)
  • preferential swelling of the dorsum of the foot and the characteristic blunt “squared-off” appearance of the digits of the involved extremity
Table 14: International Society For Lymphology Lymphedema Staging
ISL stage Description
0 A latent or subclinical condition where swelling is not yet evident despite impaired lymph transport, subtle alterations in tissue fluid/composition, and changes in subjective symptoms. It may exist months or years before overt edema occurs (stages I to III).
I An early accumulation of fluid relatively high in protein content (eg, in comparison with "venous" edema), which subsides with limb elevation. Pitting may occur. An increase in various types of proliferating cells may also be seen.
II Limb elevation alone rarely reduces the tissue swelling and pitting is manifest. Later in stage II, the limb may not pit as excess subcutaneous fat and fibrosis develop.
III Lymphostatic elephantiasis where pitting can be absent and trophic skin changes such as acanthosis, alterations in skin character and thickness, further deposition of fat and fibrosis, and warty overgrowths have developed.

Differential diagnosis includes:

  • Chronic venous insufficiency (CVI) and postphlebitic syndrome
    • CVI is characterized by aching in the lower extremities, chronic pruritus and cutaneous varicosities and discoloration. Patients with advanced CVI may develop skin ulceration.
  • Myxedema
    • Myxedema is the term given to edema that occurs when there is an abnormal deposition of mucinous substances in the extremity as a result of thyroid disease.
    • Pretibial edema occurs in thyrotoxicosis, but generalized myxedema occurs in hypothyroidism. Patients with myxedema present with rough skin of the palms, soles, elbows and knees, and yellow-orange discoloration of the skin, along with other signs of hypothyroidism.
  • Lipedema
    • Lipedema usually occurs in women and is characterized by fatty accumulation subcutaneously between the pelvis and the ankle, sparing the feet. The patient may complain of painful swelling and may first have noted the problem shortly following onset of puberty—normally one to two years afterward.
    • Stemmer's sign will be absent.
  • Malignant lymphedema
    • Malignant lymphedema, the leading cause of lymphedema in the United States, develops rapidly and progresses relentlessly.
    • Pain, which is absent from the benign form of lymphedema, is present, and the edema tends to begin centrally.
    • In the differential diagnosis of new or worsening lymphedema, recurrent cancer must be considered.

Management

  • Complete decongestive physiotherapy (i.e., a noninvasive protocol consisting of skin care, lymph drainage massage, exercises, and compression bandaging) effectively improves edema, rates of infection, and quality of life in patients with lower-extremity lymphedema. (Strength of Recommendation [SOR]: B, based on prospective cohort studies.)
    • Meticulous skin care
    • Exercise
    • Massage
    • Compression garments
      • Compression therapy mandates the presence of sufficient arterial flow to the affected limb; otherwise, such treatment may cause ischemia and necrosis.
      • Once decongestive treatments have been successful, compression garments should continue to be used and should be replaced every three to six months (or when the garment has lost its elasticity).
  • Microsurgery may be effective for patients in whom complete decongestive physiotherapy is ineffective. (SOR: C, based on a systematic review of case series.)
  • There is insufficient evidence about the safety and effectiveness of oral benzopyrones to determine whether they are useful for the treatment of lymphedema. (SOR: A, based on a systematic review.)
  • Isolated massage and “wringing out” are potentially harmful and are not recommended.
  • Diuretics should be used only in patients with specific comorbid conditions or complications. Long-term diuretic use is discouraged because of the potential for electrolyte imbalance.

Reference:

  • Am Fam Physician. 2001;64(8):1451-1452
  • Am Fam Physician. 2013;88(4):online
  • UpToDate

Max/Target heart rate

Formulas:

  • Max heart rate = 220 - age
  • Target heart rate = 50-85%

Metabolic Equivalents (METS)

MET Example
1 Watching TV
  Eating,dressing, cooking, toilet
2 Walking 1-2 blocks on level ground 1-2mph
3.5 Walking at slow pace (1mi/20min)
4 Climbing a flight of stairs
  Walking on level ground 4mph
  Running a short distance
8 Jogging (1mi/12min)
10 Playing strenuous sports (tennis, soccer, basketball)

See also: METS in Physical Activity

References:

  • AFP Vol 85 No 3 Feb 2012
  • J Musc Med Mar 2012

Murmurs

Describing

  • Timing:
    • systolic
      • midsystolic (systolic ejection murmurs, or SEM)
        • AS
        • PS
        • ASD
        • HOCM
      • holosystolic (pansystolic)
        • MR
        • TR
        • VSD
      • late systolic
        • MVP
    • diastolic
      • Early
        • AR
        • PR
        • Austin-Flint
      • Mid/Late
        • MS
        • TS
    • Continuous throughout systole and diastole
      • Patent ductus arteriosus
      • Combination murmurs
  • Grading
    • Systolic on a scale of 6
    • Diastolic on a scale of 4
  • Shape
    • crescendo, decrescendo, crescendo-decrescendo or uniform
  • Pitch
    • high pitched if there is a large pressure gradient across the pathologic lesion and low pitched if the pressure gradient is low.
    • high-pitched sounds are heard with the diaphragm of the stethoscope, whereas low-pitched sounds are heard with the bell.
  • Location
    • A = aortic valve post (right upper sternal border or RUSB)
    • P = pulmonic valve post (left upper sternal border or LUSB)
    • T = tricuspid valve post (left lower sternal border or LLSB)
    • M = mitral valve post (apex)

Orthostatic Hypotension   edit

Defined:

  • A decrease in blood pressure of 20 mm Hg or more systolic or 10 mm Hg or more diastolic within 3 minutes of standing from the supine position or on assuming a head-up position of at least 60 degrees during tilt table testing.

Symptoms:

  • Due to inadequate physiologic compensation and organ hypoperfusion
  • headache
  • lightheadedness
  • shoulder and neck pain (coat hanger syndrome)
  • visual disturbances
  • dyspnea
  • chest pain

Associated with:

  • significant increase in cardiovascular risk and falls
  • up to a 50% increase in relative risk of all-cause mortality

Diagnosis:

  • Measure blood pressure and heart rate after 5 minutes in the supine position and 3 minutes after moving to a standing position.
  • Labs:
    • B12 methylmalonic acid
    • BMP
    • CBC
    • EKG
    • TSH
    • Screen for supine HTN

Classification:

  • Neurogenic
  • Nonneurogenic
    • An increase in heart rate of 0.5 beats per minute or more for every mm Hg decrease in systolic blood pressure has a high sensitivity (91%) and specificity (88%) for nonneurogenic orthostatic hypotension
  Neurogenic Nonneurogenic
Heart rate compensation ratio (Change in HR/Ch in SBP) Decreased or absent (<0.5 bpm/mmHg) Marked (>0.5bpm/mmHg)
Symptoms of systemic autonomic failure Urinary dysfunction, GI dysfunction, postprandial hypotension; Symptoms worse in AM None
Neurologic deficits Parkinsonism, Cognitive dulling, Cerebellar signs, Peripheral sensory abnormalities None

Treatment goals:

  • reduce symptoms
  • improve quality of life

Initial treatment focuses on the underlying cause and adjusting potentially causative medications.

Nonpharmacologic strategies include:

  • dietary modifications
    • Appropriate volume status is maintained by adequate hydration and sodium intake
    • Consumption of 2 to 2.5 L of fluids per day is recommended to counteract expected urinary losses
    • Patients should aim for at least 2 to 3 g of sodium intake per day
  • compression garments
    • Wearing waist-high compression garments with graded pressures of 30 to 40 mm Hg, may be used to reduce venous pooling in the legs and splanchnic circulation
  • physical maneuvers
    • Physical counter maneuvers, including leg-crossing or squatting reduce venous pooling in the legs and splanchnic circulation
  • Physical fitness should be encouraged because bed rest can further exacerbate symptoms
  • avoiding environments that exacerbate symptoms

First-line medications - titrated to relieve symptoms (LOE B):

  • midodrine
  • droxidopa

Although fludrocortisone improves symptoms, it has concerning long-term effects.

Off-label use of atomoxetine (Strattera) and pyridostigmine (Mestinon) can be considered as adjunctive therapy

Reference:

  • Am Fam Physician. 2022;105(1):39-49

Peripheral Arterial Disease

  • Use the ankle-brachial index for diagnosis in patients with history/physical exam findings suggestive of peripheral arterial disease (PAD). A
  • Strongly encourage smoking cessation in patients with PAD as doing so reduces 5-year mortality and amputation rates. B
  • Use structured exercise programs for patients with intermittent claudication prior to consideration of revascularization; doing so offers similar benefit and lower risks. A
  • Recommend revascularization for patients who have limb ischemia or lifestyle-limiting claudication despite medical and exercise therapy. B

ABI

  • A resting ABI is performed with the patient in the supine position, with measurement of systolic blood pressure in both arms and ankles using a Doppler ultrasound device

Management

  • Smoking cessation
  • Exercise
  • Diet
  • Medication
    • HTN Management
    • High-dose statin
    • Antiplatelet agent - preferably cloidogrel

References:

  • JFP Dec 2020 Vol 69 No 10

Post MI Medications

  • Antiplatelet agent (like ASA 81mg/d or clopidogrel 75mg/d)
  • RAAS blockers (like lisinopril 20mg/d or losartan50mg/d)
  • B-blockers (like motoprolol 100mg bid)
  • Statins (like atorvastatin 80mg/d)

References:

  • JFP Vol 59 No 9 Sep 2010

Postural orthostatic tachycardia syndrome (POTS)

Postural orthostatic tachycardia syndrome is a distinct entity from orthostatic hypotension and is associated with symptoms of orthostatic intolerance and tachycardia without hypotension

Reference:

  • Am Fam Physician. 2022;105(1):39-49

Prognostic Significance of Between-Arm Blood Pressure Differences   edit

[2023-07-07 Fri 10:28]

Abstract:

Blood pressure (BP) recordings often differ between arms, but the extent to which these differences are reproducible and whether the differences have prognostic importance is unknown. We enrolled 421 consecutive patients from a medicine and a renal clinic at a veterans’ hospital. Three BP recordings were obtained in each arm using an oscillometric device in a sequential manner and repeated in 1 week. Patients were followed for all-cause mortality ≤7 years. The right arm had 5.1-mm Hg higher systolic BP that attenuated by ≈2.2 mm Hg a week later. Systolic BP dropped 6.9 mm Hg over 1 week and by an additional 5.3 mm Hg in patients with chronic kidney disease. Accounting for the visit and arm effect improved the reproducibility of the BP measurements. The intraclass correlation coefficient was 0.74, which improved to 0.88 after accounting for visit and 0.93 after accounting for arm. The crude mortality rate was 6.33 per 100 patient-years. Every 10-mm Hg difference in systolic BP between the arms conferred a mortality hazard of 1.24 (95% CI: 1.01 to 1.52) after adjusting for average systolic BP and chronic kidney disease. BP differences between arms are reproducible and carry prognostic information. Patients should have evaluation of BP in both arms at the screening visit.

  • In this study we found that in veterans attending a renal clinic or a general medicine clinic, there were consistent differences in BP between arms.
  • At each of the visits, ≈30% of the patients had between-arm systolic BP differences that exceeded 10 mm Hg, and between 30% and 40% of the patients had between-arm diastolic BP differences that exceeded 5 mm Hg. On average, the right arm had ≈5-mm Hg higher systolic BP that attenuated by ≈2 mm Hg a week later.
  • Systolic BP dropped ≈7 mm Hg from over 1 week and by an additional ≈5 mm Hg in CKD patients. Accounting for the visit and arm effect reduced the residual variance and improved the reproducibility of the measurements.
  • Finally, every 10-mm Hg difference in systolic BP conferred a 24% higher mortality hazard after accounting for average systolic BP at baseline and CKD.

Reference:

Recommended Lifestyle Modifications in Hypertension

  • Alcohol moderation
    • Abstain from binge drinking
    • Limit to moderate daily consumption (i.e., 1.5 standard drinks per day for women and 2 for men)
  • Diet
    • Increase consumption of dairy, fruits, polyunsaturated fats, vegetables, and whole grains
    • Increase consumption of foods high in calcium, magnesium, and potassium (e.g., avocados, legumes, nuts, seeds, tofu)
    • Increase consumption of vegetables high in nitrites (e.g., leafy vegetables, beetroot)
    • Reduce consumption of foods high in sugar, and saturated or trans fats
  • Healthy drinks
    • Consider hibiscus tea, pomegranate juice, beetroot juice, and cocoa
    • Moderate consumption of coffee, and green and black tea
  • Physical activity
    • Add strength or resistance training 2 to 3 days per week
    • Moderate intensity aerobic activity (e.g., walking, jogging, cycling, yoga, swimming) at least 5 days per week
  • Salt reduction
    • Avoid adding salt when cooking or dining
    • Limit consumption of high salt foods, including fast foods, processed foods, and soy sauce
    • Many breads and cereals are high in salt
  • Smoking cessation
    • Smoking cessation programs and adjuncts are recommended
  • Stress reduction
    • Daily mindfulness or meditation appears to improve blood pressure measurements
  • Weight loss
    • Evaluate obesity by waist-to-height ratio less than 0.5, or by ethnic-specific body mass index targets
    • Limit obesity, particularly truncal obesity

Reference:

  • AFP Jun 2021 Vol 103 No 12

Reduce Leg Swelling   edit

Self-help measures to reduce leg swelling in diabetics:

  • Twice a day, lie down with pillows under your legs to bring them above your heart levels.
  • Make sure you get regular exercise to reduce risks of fluid build-up in legs.
  • Wear compression stockings if you are prone to leg swellings.
  • Eating a low-sodium diet will help symptoms of leg swellings.
  • For diabetic women, wearing low-heeled or flat shoes is the best way to avoid leg swelling.
  • Don’t stand in one spot for too long. Take breaks to sit down. If your job requires you to stand for long hours, keep one leg bent at the knee and then repeat the same with the other leg to keep them moving.
  • Get regular leg massages to improve blood circulation in the entire leg. Start with the lower legs and move downwards to the toes. This will redistribute any accumulated fluids throughout the leg.
  • Wear well-fitted shoes that are never tight, even when your feet feel slightly swollen. If you must, buy shoes one size bigger. It is better to buy shoes with ties to be adjusted as per foot condition.
  • Never sit cross-legged because it stops circulation of blood to the lower leg.
  • If you smoke, consider quitting because a diabetic who smokes is at increased risk of leg swelling.

Supraventricular Tachycardia

Triggers:

  • Alcohol
  • Anemia
  • Caffeine
  • Drugs
    • Antipsychotics
    • Bronchodilattors
    • Cannabinoids
    • Catecholamines
    • Corticosteroids
    • Decongestants
    • Inotropes
    • Loop diuretics
    • Stimulants
    • Vasodilators
  • Electrolyte abnormalitis
  • Exercise
  • Fever
  • Hyperthyroidism
  • Hypovolemia

Vagal Meneuvers:

  • Carotid sinus massage (5-10 sec)
  • Diving reflex (up to 30s): patient submerges face in cold water or bags of ice paced on nose and forehead
  • Valsalva (10-15 sec): Patient bears down against a closed glottis or blows through a straw or 10-ml syringe

Reference:

  • AFP Vol 107 No 6 Jan 2023

Troponin increased plasma values

  • Patients with elevated troponin levels and chronic renal disease, pulmonary hypertension, pulmonary embolism, chronic obstructive pulmonary disease, sepsis, or acute ischemic stroke have a 2- to 5-fold increased risk of death, even in the absence of known cardiovascular disease (strength of recommendation: B, meta-analysis, multiple prospective and retrospective observational studies.)
  • Elevated troponin raises risk of death 5-fold in pulmonary embolism patients.
  • Elevated troponin I is an independent predictor of mortality in severe sepsis.
  • Elevated troponin predicts increased death risk in up to 20% of stroke patients.

References:

  • J Fam Pract. 2013 October;62(10):585-586, 598.

Myocardial ischemia

  1. Acute coronary syndrome
    • STEMI
    • NSTEMI
  2. Other coronary ischemia
    • Arrhythmia: tachy- or brady-
    • Cocaine/methamphetamine use
    • Coronary intervention (PCI or cardiothoracic surgery)
    • Stable coronary atherosclerotic disease in setting of increased O2 demand (eg tachycardia)
    • Severe hypertension
    • Coronary embolus
    • Aortic dissection
    • Coronary artery vasculitis (SLE, Kawasaki's)
  3. Non-coronary ischemia
    • Shock (hypotension)
    • Hypoxia
    • Hypoperfusion
    • Pulmonary embolism
    • Global ischemia
    • CT Surgery

Myocardial injury with no ischemia

  1. Comorbidities
    • Renal failure
    • Sepsis
    • Infiltrative diseases
    • Acute respiratory failure
    • Stroke
    • Subarachnoid hemorrhage
  2. Specific identifiable precipitants
    • Extreme exertion
    • Cardiac contusion
    • Burns >30% BSA
    • Cardiotoxic meds: anthracyclines, herceptin
    • Electrical shock
    • Carbon monoxide exposure
  3. Other
    • Apical ballooning (Takotsubo)
    • Myocarditis
    • Myopericarditis
    • Rhabdomyolysis involving cardiac muscle
    • Hypertrophic cardiomyopathy
    • Peripartum cardiomyopathy
    • Heart failure, malignancy, stress cardiomyopathy

References:

  • UptoDate Graphic 54910

Use of Cardiac Troponin Testing in the Outpatient Setting   edit

[2023-09-19 Tue 16:33]

Objectives:

  • Cardiac troponin (cTn) measurement is useful for diagnosing myocardial infarction (MI), particularly in the inpatient setting. A growing body of literature suggests that cTn may be useful for evaluating chronic conditions in the outpatient environment; however, little is known regarding cTn ordering patterns in this setting. We sought to investigate patterns of care and outcomes for patients evaluated with cTn in the outpatient setting. We hypothesized that a majority of outpatient cTn orders would be for the purpose of diagnosing possible MI.

Methods:

  • We analyzed 228 patients who had outpatient orders for standard-sensitivity troponin T assays placed at our institution between January 1, 2013 and December 18, 2015. Data were divided into two cohorts based on the intended utility of cTn measurement: orders placed to evaluate for possible MI versus orders placed for some other purpose.

Results:

  • Of the 228 patients, 161 were evaluated for possible MI and 67 for other reasons.
  • Risk factors (hypertension P = 0.32, diabetes mellitus P = 0.41, coronary disease P = 0.38, heart failure P = 0.098, and chronic kidney disease P = 0.70) were similar between the cohorts.
  • In the suspected MI cohort, an electrocardiogram was obtained in only 77% of patients, and only 13.1% were sent to the emergency department (ED) for further evaluation.
  • Within the suspected MI cohort, 10.5% (n = 17) had elevated cTn and the majority of these patients (n = 10) were not sent to the ED.

Conclusions:

  • The majority of outpatient cTn orders were intended to evaluate for MI, although electrocardiograms were frequently not ordered and few patients were sent for further ED evaluation.
  • Providers should be encouraged to use cTn testing in a manner that minimizes the potential risk to patients with possible MI.

Reference:

  • Ross SJ, Shah NH, Noutong Njapo SA, Cordiner DJ, Winchester DE. Use of Cardiac Troponin Testing in the Outpatient Setting. South Med J. 2019 May;112(5):295-300. doi: 10.14423/SMJ.0000000000000971. PMID: 31050800.
  • https://pubmed.ncbi.nlm.nih.gov/31050800/

When to use in general practice?

There are some situations where it may be appropriate for a GP to order a troponin test, and the position that a troponin test should never be ordered in the community setting is an oversimplification. Generally, there are two situations where it might be reasonable for a GP to order a troponin test in the community.

  1. The first is when a patient has had symptoms of ACS in the preceding days but, on presentation, the symptoms have completely resolved and the patient is clinically stable and deemed to be at low risk.
  2. The second is when a patient presents with atypical symptoms and has a low likelihood of ACS, and the clinician uses troponin testing to essentially ‘rule out’ ACS to cover clinical uncertainty.
    • A 12-lead ECG contributes further to this risk assessment, albeit with the limitation that up to one-third of patients with non-ST elevation ACS may have a normal ECG.15
    • A positive troponin result in this setting may occasionally be detected, which will subsequently allow for appropriate management and specialist referral.7,13

If primary care Hs-Tn testing is performed in atypical, low-risk presentations with chest pain, it is important that a serial troponin test is performed three hours after the presentation if the symptoms have been present for <6 hours at the time of clinical review and the initial Hs-Tn test.11

Late increases in troponin have been described in about 1% of patients with recurrent chest pain.11

Therefore, clinical risk assessment should be ongoing, including consideration of alternative, non-ACS diagnoses.

Key Points:

  • Patients presenting with possible ACS and symptoms occurring within the previous 24 hours should be promptly referred and transported to a hospital emergency department.
  • Absence of an elevated troponin does not exclude unstable angina, and urgent cardiac assessment is still appropriate if the presenting symptoms are highly suggestive of ACS.
  • Troponin testing should not be ordered unless there is a mechanism to review the result as soon as it is available.
  • Troponin testing may have a limited role in primary care in the following scenarios:
  • low-risk patients in whom symptoms have completely resolved 24 hours prior to presentation
  • atypical symptoms with a low likelihood of ACS, where troponin testing may essentially ‘exclude’ ACS to cover clinical uncertainty
  • recent symptoms of an ACS where the patient can be appropriately monitored in a general practice setting while waiting for the result.

Reference:

Statins and Benefits   edit

[2024-01-20 Sat 18:35]

Notes:

  • Statin therapy resulted in an average gain in life expectancy of 0.3 (95% CI 0.2–0.3) y, with a range of 0.0 to 2.0 y.
  • The gain in CHD/stroke-free life expectancy with statin therapy was 0.7 (95% CI 0.5–1.0) y, with a range of 0.1 to 2.8 y.
  • The absolute risk reduction in CVD incidence with statin therapy was larger than the decrease in CVD mortality:
    • 6.6% (95% CI 4.5–8.5) versus 3.0% (95% CI 2.0–3.9).
  • The competing other CVD and non-CVD lifetime mortality risks increased with statin therapy, by 0.9% (95% CI 0.3–1.7) and 2.1% (95% CI 1.3–3.0), respectively.
Table 15: Predicted outcomes and changes with statin therapy for the study population (n = 2,428) aged 55 y and older, free of cardiovascular disease and symptoms at baseline.
Outcome Mean Baseline Value (SD) Mean Absolute Change (SD) Minimum; Maximum Absolute Change 95% CI Absolute Change
Total life expectancy (years) 18.3 (6.5) +0.3 (0.2) 0.0; +2.0 +0.2; +0.3
CHD/stroke-free life expectancy (years) 16.0 (5.8) +0.7 (0.4) +0.1; +2.8 +0.5; +1.0
CHD/stroke incidence (percent) 33.2 (10.6) −6.6 (1.7) −11.0; −2.8 −8.5; −4.5
CHD/stroke mortality (percent) 12.8 (5.3) −3.0 (1.2) −11.5; −0.9 −3.9; −2.0
Other CVD mortality (percent) 26.0 (8.7) +0.9 (0.7) −0.8; +6.8 +0.3; +1.7
Non-CVD mortality (percent) 61.3 (10.9) +2.1 (0.9) +0.1; +7.7 +1.3; +3.0
Table 16: Changes (Δ) in total life expectancy and CHD/stroke-free life expectancy with statin therapy, compared with predicted 10-y total CVD mortality risk for different risk factor profiles.
Risk Profile Total Life Expectancy in Years   CHD/Stroke-Free Life Expectancy in Years   10-Y Total CVD Mortality
  No Statin Δ No Statin Δ  
55-y-old non-smoking ♀, blood pressure 140/80 mm Hg, hypertension +, total cholesterol 6.0 mmol/l, HDL cholesterol 1.5 mmol/l, diabetes −, glucose 6.0 mmol/l, BMI 25.0, WHR 0.80, creatinine 80 µmol/l 28.9 +0.3 24.9 +1.0 2%
65-y-old smoking ♂, blood pressure 130/70 mm Hg, hypertension +, total cholesterol 7.0 mmol/l, HDL cholesterol 1.0 mmol/l, diabetes +, glucose 6.0 mmol/l, BMI 30.0, WHR 1.06, creatinine 90 µmol/l 13.1 +0.4 9.7 +1.0 15%
55-y-old non-smoking ♂, blood pressure 140/75 mm Hg, hypertension +, total cholesterol 7.0 mmol/l, HDL 1.3 mmol/l, diabetes −, glucose 6.5 mmol/l, BMI 27.0, WHR 1.00, creatinine 80 µmol/l 23.9 +0.4 18.7 +1.2 3%
75-y-old smoking ♂, blood pressure 120/80 mm Hg, hypertension +, total cholesterol 4.5 mmol/l, HDL 1.0 mmol/l, diabetes +, glucose 6.0 mmol/l, BMI 21.0, WHR 1.00, creatinine 90 µmol/l 6.5 +0.1 6.1 +0.1 21%

Additional Notes:

  • Although the average gain in total life expectancy with statin therapy may seem small, it is larger than that calculated for some other preventive interventions targeted at the general population [29]. One should recognize that gains were much larger in particular participants, and were averaged out by participants who never experienced CVD.
  • In addition, we observed that gains in CHD/stroke-free life expectancy were generally larger than those in total life expectancy.

Reference:

Study: Long-Term Effect of Salt Substitution for Cardiovascular Outcomes

[2024-05-02 Thu 10:59]

Background:

  • Salt substitution is a simple yet increasingly promising strategy to improve cardiovascular outcomes.

Purpose:

  • To evaluate the long-term effects of salt substitution on cardiovascular outcomes.

Data Sources:

  • PubMed, EMBASE, Cochrane CENTRAL, and CINAHL searched from inception to 23 August 2023. Trial registries, citation analysis, and hand-search were also done.

Study Selection:

  • Randomized controlled trials (RCTs) comparing provision of or advice to use a salt substitute with no intervention or use of regular salt among adults for 6 months or longer in total study duration.

Data Extraction:

  • Two authors independently screened articles, extracted data, and assessed risk of bias. Primary outcomes include mortality, major cardiovascular events (MACE), and adverse events at 6 months or greater. Secondary and post hoc outcomes include blood pressure, cause-specific mortality, and urinary excretion at 6 months or greater. Random-effects meta-analyses were done and certainty of effect estimates were assessed using GRADE (Grading of Recommendations Assessment, Development and Evaluation).

Data Synthesis:

  • Of the 16 included RCTs, 8 reported on primary outcomes. Most (n = 7 of 8) were done in China or Taiwan, 3 were done in residential facilities, and 7 included populations of older age (average 62 years) and/or with higher-than-average cardiovascular risk. In this population, salt substitute may reduce risk for all-cause mortality (6 RCTs; 27 710 participants; rate ratio [RR], 0.88 [95% CI, 0.82 to 0.93]; low certainty) and cardiovascular mortality (4 RCTs; 25 050 participants; RR, 0.83 [CI, 0.73 to 0.95]; low certainty). Salt substitute may result in a slight reduction in MACE (3 RCTs; 23 215 participants; RR, 0.85 [CI, 0.71 to 1.00]; very low certainty), with very low-certainty evidence of serious adverse events (6 RCTs; 27 995 participants; risk ratio, 1.04 [CI, 0.87 to 1.25])

Limitations:

  • The evidence base is dominated by a single, large RCT. Most RCTs were from China or Taiwan and involved participants with higher-than-average cardiovascular risk; therefore, generalizability to other populations is very limited.

Conclusion:

  • Salt substitution may reduce all-cause or cardiovascular mortality, but the evidence for reducing cardiovascular events and for not increasing serious adverse events is uncertain, particularly for a Western population. The certainty of evidence is higher among populations at higher cardiovascular risk and/or following a Chinese diet.

Reference:

  • Greenwood H, Barnes K, Clark J, Ball L, Albarqouni L. Long-Term Effect of Salt Substitution for Cardiovascular Outcomes : A Systematic Review and Meta-Analysis. Ann Intern Med. 2024 Apr 9. doi: 10.7326/M23-2626. Epub ahead of print. PMID: 38588546.
  • https://www.acpjournals.org/doi/10.7326/M23-2626

DVT

DVT Prevention in Airline Flights

  • Compression stockings are effective at reducing asymptomatic DVT in airline passengers taking flights longer than five hours in both high-risk (number needed to treat [NNT] = 37; 95% CI, 35 to 46) and low-risk (NNT = 111; 95% CI, 100 to 143) populations. (SOR: C)
  • It is unclear if compression stockings prevent symptomatic DVT, pulmonary embolism (PE), or death.
  • There are no significant adverse events associated with their use.

Reference:

  • AFP Jan 2022 Vol 105 No 1

Study: Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women   edit

[2024-02-06 Tue 13:59]

Background:

  • Elevated blood pressure, or hypertension, is the leading cause of preventable deaths globally. Diets high in sodium (predominantly sodium chloride) and low in potassium contribute to elevated blood pressure. The WHO recommends decreasing mean population sodium intake through effective and safe strategies to reduce hypertension and its associated disease burden. Incorporating low-sodium salt substitutes (LSSS) into population strategies has increasingly been recognised as a possible sodium reduction strategy, particularly in populations where a substantial proportion of overall sodium intake comes from discretionary salt. The LSSS contain lower concentrations of sodium through its displacement with potassium predominantly, or other minerals. Potassium-containing LSSS can potentially simultaneously decrease sodium intake and increase potassium intake. Benefits of LSSS include their potential blood pressure-lowering effect and relatively low cost. However, there are concerns about potential adverse effects of LSSS, such as hyperkalaemia, particularly in people at risk, for example, those with chronic kidney disease (CKD) or taking medications that impair potassium excretion.

Objectives:

  • To assess the effects and safety of replacing salt with LSSS to reduce sodium intake on cardiovascular health in adults, pregnant women and children.

Search methods:

  • We searched MEDLINE (PubMed), Embase (Ovid), Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science Core Collection (Clarivate Analytics), Cumulative Index to Nursing and Allied Health Literature (CINAHL, EBSCOhost), ClinicalTrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) up to 18 August 2021, and screened reference lists of included trials and relevant systematic reviews. No language or publication restrictions were applied.

Selection criteria:

  • We included randomised controlled trials (RCTs) and prospective analytical cohort studies in participants of any age in the general population, from any setting in any country. This included participants with non-communicable diseases and those taking medications that impair potassium excretion. Studies had to compare any type and method of implementation of LSSS with the use of regular salt, or no active intervention, at an individual, household or community level, for any duration.

Data collection and analysis:

  • Two review authors independently screened titles, abstracts and full-text articles to determine eligibility; and extracted data, assessed risk of bias (RoB) using the Cochrane RoB tool, and assessed the certainty of the evidence using GRADE. We stratified analyses by adults, children (≤ 18 years) and pregnant women. Primary effectiveness outcomes were change in diastolic and systolic blood pressure (DBP and SBP), hypertension and blood pressure control; cardiovascular events and cardiovascular mortality were additionally assessed as primary effectiveness outcomes in adults. Primary safety outcomes were change in blood potassium, hyperkalaemia and hypokalaemia.

Main results:

  • We included 26 RCTs, 16 randomising individual participants and 10 randomising clusters (families, households or villages).
  • A total of 34,961 adult participants and 92 children were randomised to either LSSS or regular salt, with the smallest trial including 10 and the largest including 20,995 participants. No studies in pregnant women were identified. Studies included only participants with hypertension (11/26), normal blood pressure (1/26), pre-hypertension (1/26), or participants with and without hypertension (11/26). This was unknown in the remaining studies. The largest study included only participants with an elevated risk of stroke at baseline. Seven studies included adult participants possibly at risk of hyperkalaemia.
  • All 26 trials specifically excluded participants in whom an increased potassium intake is known to be potentially harmful.
  • The majority of trials were conducted in rural or suburban settings, with more than half (14/26) conducted in low- and middle-income countries. The proportion of sodium chloride replacement in the LSSS interventions varied from approximately 3% to 77%.
  • The majority of trials (23/26) investigated LSSS where potassium-containing salts were used to substitute sodium. In most trials, LSSS implementation was discretionary (22/26). Trial duration ranged from two months to nearly five years.
  • We assessed the overall risk of bias as high in six trials and unclear in 12 trials.
  • LSSS compared to regular salt in adults:
    • LSSS compared to regular salt probably reduce DBP on average (mean difference (MD) -2.43 mmHg, 95% confidence interval (CI) -3.50 to -1.36; 20,830 participants, 19 RCTs, moderate-certainty evidence) and SBP (MD -4.76 mmHg, 95% CI -6.01 to -3.50; 21,414 participants, 20 RCTs, moderate-certainty evidence) slightly.
    • On average, LSSS probably reduce
      • non-fatal stroke (absolute effect (AE) 20 fewer/100,000 person-years, 95% CI -40 to 2; 21,250 participants, 3 RCTs, moderate-certainty evidence),
      • non-fatal acute coronary syndrome (AE 150 fewer/100,000 person-years, 95% CI -250 to -30; 20,995 participants, 1 RCT, moderate-certainty evidence)
      • cardiovascular mortality (AE 180 fewer/100,000 person-years, 95% CI -310 to 0; 23,200 participants, 3 RCTs, moderate-certainty evidence) slightly, and
      • probably increase blood potassium slightly (MD 0.12 mmol/L, 95% CI 0.07 to 0.18; 784 participants, 6 RCTs, moderate-certainty evidence), compared to regular salt.
    • LSSS may result in little to no difference, on average, in hypertension (AE 17 fewer/1000, 95% CI -58 to 17; 2566 participants, 1 RCT, low-certainty evidence) and hyperkalaemia (AE 4 more/100,000, 95% CI -47 to 121; 22,849 participants, 5 RCTs, moderate-certainty evidence) compared to regular salt.
    • The evidence is very uncertain about the effects of LSSS on blood pressure control, various cardiovascular events, stroke mortality, hypokalaemia, and other adverse events (very-low certainty evidence).
    • LSSS compared to regular salt in children: The evidence is very uncertain about the effects of LSSS on DBP and SBP in children. We found no evidence about the effects of LSSS on hypertension, blood pressure control, blood potassium, hyperkalaemia and hypokalaemia in children.

Authors' conclusions:

  • When compared to regular salt, LSSS probably reduce blood pressure, non-fatal cardiovascular events and cardiovascular mortality slightly in adults.
  • However, LSSS also probably increase blood potassium slightly in adults.
  • These small effects may be important when LSSS interventions are implemented at the population level. Evidence is limited for adults without elevated blood pressure, and there is a lack of evidence in pregnant women and people in whom an increased potassium intake is known to be potentially harmful, limiting conclusions on the safety of LSSS in the general population. We also cannot draw firm conclusions about effects of non-discretionary LSSS implementations. The evidence is very uncertain about the effects of LSSS on blood pressure in children.

Reference:

  • Brand A, Visser ME, Schoonees A, Naude CE. Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women. Cochrane Database Syst Rev. 2022 Aug 10;8(8):CD015207. doi: 10.1002/14651858.CD015207. PMID: 35944931; PMCID: PMC9363242.
  • https://pubmed.ncbi.nlm.nih.gov/35944931/

Carotid US Screening

[2024-06-04 Tue 10:02]

According to the 2011 guidelines from the American College of Cardiology Foundation (ACCF), American Heart Association (AHA), and other societies, carotid duplex ultrasonography is not recommended for routine screening of asymptomatic patients without clinical manifestations or risk factors for atherosclerosis.

It may be considered in asymptomatic patients who have two or more of the following risk factors:

  • Hypertension
  • Hyperlipidemia
  • Tobacco smoking
  • A family history of atherosclerosis manifested before age 60 years in a first-degree relative
  • A family history of ischemic stroke

The presence of an audible carotid bruit, Hollenhorst plaque on fundoscopic examination, or silent cerebral infarction on brain imaging may warrant carotid ultrasound screening.

Reference:

  • Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, Cates CU, Creager MA, Fowler SB, Friday G, Hertzberg VS, McIff EB, Moore WS, Panagos PD, Riles TS, Rosenwasser RH, Taylor AJ; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines; American Stroke Association; American Association of Neuroscience Nurses; American Association of Neurological Surgeons; American College of Radiology; American Society of Neuroradiology; Congress of Neurological Surgeons; Society of Atherosclerosis Imaging and Prevention; Society for Cardiovascular Angiography and Interventions; Society of Interventional Radiology; Society of NeuroInterventional Surgery; Society for Vascular Medicine; Society for Vascular Surgery; American Academy of Neurology and Society of Cardiovascular Computed Tomography. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary. Stroke. 2011 Aug;42(8):e420-63. doi: 10.1161/STR.0b013e3182112d08. Epub 2011 Jan 31. Erratum in: Stroke. 2011 Aug;42(8):e541. PMID: 21282494.
  • https://pubmed.ncbi.nlm.nih.gov/21282494/

Patient Messaging: Venous Insufficiency   edit

[2024-08-08 Thu 10:24]

I think it is a venous return issue. The best things for you to do are:

  • Continue being active by walking daily
  • Avoid crossing your legs (cutting of the return flow)
  • Avoid prolonged sitting or standing
  • Wear compression socks regularly
  • Minimize salt intake in your diet

OTC Blood Pressure Cuffs

  1. OMRON 5 Series Wireless Upper Arm Blood Pressure Monitor (BP7250)
  2. Blood Pressure Monitors, Bp Monitor - Blood Pressure Machine Large Cuff Blood Pressure Monitor Upper Arm Cuff 8.7''-17.3'', Large Screen, 2 Users Total 198 Memories
  3. Blood Pressure Monitor With Heart Rate - Automatic Wrist Cuff Blood Pressure Machine With LCD Display Memory and Carrying Case by Bluestone
  4. Etekcity - Blood Pressure Monitor - White

Dermatology

9 tips to help prevent derm biopsy mistakes

PRACTICE RECOMMENDATIONS

  • Use an excisional biopsy for a melanocytic neoplasm. (SOR C)
  • Choose a punch biopsy over a shave biopsy for rashes. (SOR B)
  • Properly photograph and document the location of all lesions before biopsy. (SOR A)
  • Provide the pathologist with a sufficient history, including the distribution and appearance of the lesion, and how long the patient has had it. (SOR A)

The 9 tips:

  1. Choose your biopsy type wisely.
    • The most common biopsy types are shave, punch, and excisional
    • Shave biopsy: lesions that are solitary, elevated, and give the impression that a sufficient amount of tissue can be sampled using this technique
    • Punch biopsy: most "rashes" (inflammatory skin disorders)
    • Excisional biopsy: melanocytic neoplasms or larger lesions.
    • Videos of biopsies: http://www.jfponline.com/multimedia/video.html
  2. When performing a shave biopsy, avoid obtaining a sample that's too superficial.
    • The advantage of the shave biopsy is that it is minimally invasive and quick to perform
  3. Choose punch over shave biopsy for rashes.
    • Punch biopsy is the preferred technique for almost all inflammatory skin conditions (rashes)
    • A punch biopsy size of 4 mm is commonly used for rashes
  4. Choose an excisional biopsy for a melanocytic neoplasm, when possible.
    • The purpose of an excisional biopsy (which typically includes a 1 to 3 mm rim of normal skin around the lesion) is to completely remove a lesion.
    • The excisional biopsy generally is the preferred technique for clinically atypical melanocytic neoplasms (lesions that are not definitively benign)
  5. Be careful with curettage.
    • Curettage is a biopsy technique in which a curette—a surgical tool with a scoop, ring, or loop at the tip—is used in a scraping motion to retrieve tissue from the patient.
  6. Remember the importance of proper fixation and processing.
    • Promptly place sampled tissue in an adequate amount of formalin so that the tissue is submersed in it in the container
    • Failure to do so can result in improper fixation and will make it difficult to render an appropriate diagnosis.
  7. Properly photograph and document the biopsy location.
    • To properly record the site of a biopsy for future dermatologic exams, take pictures of the lesion at the time of biopsy. The photographs should clearly document the lesion in question, and should be taken far enough from the site that surrounding lesions and/ or other anatomic landmarks are also visible.
  8. Give the pathologist a pertinent history.
    • Providing the pathologist with a sufficient history, including the distribution and appearance of the lesion, and how long the patient has had it
  9. Know when to refer.

Refernces:

  • J Fam Pract. 2014 October;63(10):559-564.

Acne

Start treatment with:

  • adapalene plus benzoyl peroxide
  • clindamycin plus benzoyl peroxide
  • or adapalene alone

Disease of sebaceous follicles - multifactorial (abn keratonization, excessive sebum, Propionibacterium acnes, and hormones)

  • Open Comedones: flat or slightly raised with dark substance in cental orifice
  • Closed Comedones: pale white papules with no visible orifice

Therapy is based on lesion type and severity (mild, mod, severe):

  • Noninflammatory
    • First line: topical tretinoin (predominance of comedones) if not effective -> topical antimicroials like benzoyl peroxide (preferred with inflammation) (Level 1 evidence).
    • Second line - adapalene (I)
  • Papular or pustular (Topical retinoid + benzoyl peroxide + topical antibiotic) (Oral Abx if severe)
    • First line: topical erythromycin (I), clindamycin (I), clindoxyl (I), or benzamycin (I)
    • Second line: Oral tetracycline (I), minocycline (I), or doxycycline 100mg/d(I), also erythromycin, clindamycin, ampicillin, amoxicillin (all Level 1)
    • Third line: Oral antibiotics plus topical retinoids (I)
    • Fourth line Trimethoprim-sulfamethoxazole (III)
  • Nodulocystic or treatment resistant acne or scarring (Topical retinoid + benzoyl peroxide + oral antibiotic)
    • First line: steroid injection if sparse (I), isotretinoin if severe (I)
    • Second line: antiandrogens (OCP or spironolactone)

Major recommendations from guidelines:

  • Topical retinoids are recommended as monotherapy for comedonal acne or in combination with topical or oral antimicrobials in patients with mixed or primarily inflammatory acne (LOE 1)
  • Benzoyl peroxide is an effective topical agent (LOE 1)
  • Topical antibiotic therapy is recommended only in combination with benzoyl peroxide (LOE 1)
  • Systemic antibiotic therapy is recommneded for management of moderate and severe inflammatory acne and acne resistant to topical treatments (LOE 1)
    • Preferred oral antibiotic are tetracyclines with doxycycline and minocycline more effective than tetracycline
  • Systemic antibiotic use should be limited to the shortest possible duration, typically 3 months. Concomitant and ongoing topical therapy with benzoyl peroxide or topical retinoid is recommended for maintenance. (LOE 1)
  • Combined oral contraceptives are effective in treating inflammatory acne in girls and women (LOE 1)
    • Consider spirinolactone 25 mg to 100 mg for women - safe, inexpensive, and effective
  • Oral isotretinoin is recommended for treatment of severe nodular acne, moderate recalcitrant acne, or acne that produces scarring or psychosocial distress (LOE 1)
Table 17: First line treatment options:
Mild Benzoyl peroxide (BP) Topical retinoid Topical combination therapy*:BP + antibiotic; or Retinoid + BP; or Retinoid + BP + antibiotic
Moderate Topical combination therapy*: BP + antibiotic; or Retinoid + BP; or Retinoid + BP + antibiotic Oral antibiotic + topical retinoid + BP Oral antibiotic + topical retinoid + BP + topical antibiotic  
Severe Oral Antibiotic + topical combination therapy: BP + antibiotic; or Retinoid + BP; or Retinoid + BP + antibiotic Oral isotretinoin  
  • May be prescribed as a fixed combination product or as separate component.
Table 18: Alternative options:
Mild Add topical retinoid or BP (if not on already) Consider alternate retinoid Consider topical dapsone  
Moderate Consider alternate combination therapy Consider change in oral antibiotic Add combined oral contraceptive or oral spironolactone (females) Consider oral isotretinoin
Severe Consider change in oral antibiotic Add combined oral contraceptive or oral spironolactone (females) Consider oral isotretinoin  

Notes:

  • Tretinoin is associated with photosensitivity, so nighttime application is recommended.
  • Can apply benzoyl peroxide in the morning if used in combination.

Topical Medications

  • Benzoyl peroxide
  • Retinoids (adapalene, tazarotene, tretinoin, and trifarotene)
  • Topical antibiotics (erythromycin, clindamycin, dapsone, and minocycline) - Monotherapy NOT recommended
  • Alpha hydroxy acid (glycolic acid)
  • Beta hydroxy acid (salicylic acid)
  • Azelaic acid
  • Topical antiandrogen (clascoterone)
  • Others (sulfur/sulfacetamide sodium and resorcinol)
  • Combinations of topical agents

Systemic Antibiotics

  • Tetracyclines (doxycycline, minocycline, sarecycline)
  • Macrolides (azithromycin, clarithromycin, and erythromycin)
  • Penicillins (amoxicillin and ampicillin)
  • Cephalosporin (cephalexin)
  • Trimethoprim/sulfamethoxazole
  • Other (dapsone)

Strong recommendations are made for benzoyl peroxide, topical retinoids, and topical antibiotics, as well as for oral doxycycline. Oral isotretinoin is strongly recommended for acne that is severe, causing psychosocial burden or scarring, or failing standard oral or topical therapy. Conditional recommendations are made for topical clascoterone, salicylic acid, azelaic acid, as well as for oral minocycline, sarecycline, COC pills, and spironolactone. Combining topical therapies with multiple mechanisms of action, limiting systemic antibiotic use, combining systemic antibiotics with topical therapies, and adding intralesional corticosteroid injections for larger acne lesions are recommended as good practice statements

Reference:

  • AFP Col 109 No 6 Jun 2024
  • Cheung M, Taher M, Lauzon G., Acneiform facial eruptions, Canadian Fam Phys, Vol 51; April 2005; 527-533
  • AFP Vol 86 No 8 Oct 2012
  • JAMA Vol 316 No 13 Oct 2016
  • AFP Vol 95 No 11 Jun 2017
  • https://www.aad.org/member/clinical-quality/guidelines/acne
  • FPN Apr 2023
  • Zaenglein AL, Pathy AL, Schlosser BJ, Alikhan A, Baldwin HE, Berson DS, Bowe WP, Graber EM, Harper JC, Kang S, Keri JE, Leyden JJ, Reynolds RV, Silverberg NB, Stein Gold LF, Tollefson MM, Weiss JS, Dolan NC, Sagan AA, Stern M, Boyer KM, Bhushan R. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016 May;74(5):945-73.e33. doi: 10.1016/j.jaad.2015.12.037. Epub 2016 Feb 17. Erratum in: J Am Acad Dermatol. 2020 Jun;82(6):1576. doi: 10.1016/j.jaad.2020.02.010. PMID: 26897386.

Patient Messaging: Acne

Recommendations to help clear mild-to-moderate adult acne are:

  • Benzoyl peroxide: This acne-fighter is especially effective at treating mild pimples. While you’ll find products that contain up to 10% benzoyl peroxide, it’s best to start with a product that contains 2.5%. That will help you avoid side effects like dry, irritated skin or a burning sensation.
  • Adapalene: A retinoid, this active ingredient helps to clear blackheads, whiteheads, and pimples.
  • Azelaic acid: It fights acne and can also fade the dark spots that appear when an acne spot clears.
  • Salicylic acid: Because it unclogs pores and exfoliates the skin, salicylic acid works best on whiteheads and blackheads.

Use one product for 6 to 8 weeks, taking care to use the product as directed on the instructions. During this time, don’t add another product. Don’t stop using the product you started with.

It takes some time to know if it is working:

  • Fewer breakouts: 4 to 8 weeks
  • Clearing: 16 weeks after starting the medication

Reference:

Guideline Recommendations

  • Recommendations are made in favor of several topical therapies, including:
    • Benzoyl peroxide;
    • Topical retinoids;
    • Topical antibiotics;
    • Clascoterone;
    • Salicylic acid; and
    • Azelaic acid
  • Recommendations are made in favor of several systemic therapies, including:
    • Doxycycline;
    • Minocycline;
    • Sarecycline;
    • Combined oral contraceptives;
    • Spironolactone; and
    • Isotretinoin
  • In addition, the guidelines recommend several good clinical practices, including:
    • Using topical therapies combining multiple mechanisms of action;
    • Limiting systemic antibiotic use;
    • Combining systemic antibiotics with benzoyl peroxide and other topical therapies; and
    • Adjuvant intralesional corticosteroid injections.

Reference:

Additional Notes

Topical retinoids:

  • Prefer adapalene (photostable and can mix with BP)
  • Not spot treatment
  • Use sparingly
  • Moisturize under retinoid
  • Use pea size on each index finger tip - place on forehead, cheeks, chin and rub in thinly
  • Takes 12 weeks for full effect
  • Comedonalitic

Benzoyl Peroxide

  • Leave on > Washes
  • Concentration dependent irritant
  • Topically kills C acnes and improves acne

Topical Antibiotics

  • Topical clindamycin - only use if in same tube as BP d/t pt not adhering
  • C acnes Resistant to erythromycin

Sebum inhibitor

  • Clascoterone 1% topical - bid - 12+ yo
  • Not monotherapy

Anti-inflammatory

  • Dapsone
  • Azelaic acid
    • Not great clinically

Combos

  • Epiduo -
  • BP/clinda
  • Twyneo

Oral antibiotics:

  • Anti-inflammatory
  • NOT monotherapy
    • Always topical BP
  • Use for shortest possible duration
  • Tetracyclines
    • doxycycline
      • qd o bid
      • interacts with dairy
      • photosensitivity
      • intracranial htn (rare)
    • minocycline 1 mg/kg
      • ER - qd with or without food
      • IR - qd or bid
      • photosensitivity
      • intracranial htn (rare)
      • 11% vestibular symptoms with IR
    • sarcycline
    • If needed: trimethoprim 300 mg tid

Hormones:

  • spironolactone 50-100 mg/d with food in women only
    • cheaper
    • easier to get
    • fewer AE
  • OCPs
    • Yaz
    • Beyaz

Systemic retinoid

  • Isotretinoin

Acne Rosacea

Chronic vascular facial disorder of 20-60yo northern/eastern european descent

  • Pathogenesis: unknown but implicated factors include bacteria, Demodex mites, vasomotor and connective tissue dysfunction, and topical steroids
  • Triad:
    1. Symmetrical erythema,
    2. papules and pustules, and
    3. telangiectasia on cheeks, forehead, and nose (absence of comedones)

Often exacerbated by sun, wind, hot drinks

Treatment:

  • Avoid triggers
  • First line:
    • topical metronidazole (Daily 1% or bid 0.75%) (I) plus oral tetracycline (tapered from starting dose of 1000mg/d) (I) or minocycline (100-200mg/d) (I)
  • Second line: Sulfacetamide (III) plus oral Abx as above
  • Third line: Isotretinoin (II)
  • Others to reduce rosacea symptoms
    • Alpha-adrenergic receptor agonists reduce persistent erythema (brimonidine 0.33% gel qd and oxymetazoline 1% cream qd)
    • Nonselective beta blockers reduce flushing symptoms (like carvedilol 6.25 mg bid or propranolol 20-40 mg bid|tid)
    • Daily use of a water-based broad-spectrum sunscreen with a sun protection factor of 30 or more
    • Daily application of fragrance-free moisturizers
    • Twice-daily facial cleansing

Medications for rosacea with papules and pustules:

  • Metronidazole 0.75% gel 45g AAA bid ($30-40) (See My Formulary Drugs)
  • Ivermectin 1% cream qd (highest effectiveness); NNT=3
  • Azelaic acid 15% gel bid; NNT 6
  • Low dose doxycycline 40 mg qd or 50|100 mg qd (for mod-sever)

Alternative:

  • Clindamycin 1% gel worked well for 1 patient
  • Sulfacetamide / Sulfur - Typical dosing for Avar (sulfacetamide / sulfur)
    • Cream, gel, lotion, suspension: Apply a thin film to the affected area 1 to 2 times a day.
    • Cleanser, cleansing cloth/pads: Wash affected area 1 to 2 times a day.
    • Emollient foam: Apply to affected area 1 to 2 times a day. The foam may remain on the skin or may be rinsed off after 1 to 2 minutes.

Rosacea Triggers:

  • Acute psychological stressors
  • Alcohol (52%)
  • Emotional stress (79%)
  • Extremes of temperature
    • Hot weather (75%)
    • Cold weather (46%)
  • Heavy Exercise (56%)
  • Medications
  • Menopausal hot flashes
  • Spicy foods (42%)
  • Sunlight (81%)
  • Wind (57%)

References:

  • Cheung M, Taher M, Lauzon G., Acneiform facial eruptions, Canadian Fam Phys, Vol 51; April 2005; 527-533
  • AFP Vol 109 No 6 Jun 2024

Atopic Dermatitis (New Guidelines)

Non-pharmacologic treatment options:

  • Moisturizers:
    • Use liberally, combine with bathing, patient preferences on type
  • Bathing practices:
    • Minimum perform daily
    • Soak in warm water 10-15 minutes
    • Followed by quick pat drying and immediate application (2-3 minutes) of topical moisturizer/medications.
  • Bleach baths:
    • Once or twice weekly bleach (sodium hypochlorite) is effective in clinically improving moderate-to-severe AD in children.
    • May also help adults
    • Thought to reduce skin inflammation and decrease S. Aureus colonization.
  • Wet wrap therapy (wwt):
    • Using layers of bandage, guaze, clothing, etc with topical medications. Evidence supports improvement of symptoms in children.

Pharmacologic treatment options:

  • Topical corticosteroids
  • Topical calcineurin inhibitors
  • Dupilumab
  • Phototherapy
  • Systemic immunosuppresents: cyclosporine, azathioprine, mycophenolate, methotrexate

Bed Bugs

Pregression of bites:

  1. Initial reaction
    1. Erythematous, pruritis macules with central hemorrhagic puncta in linear or grouped distribution
  2. Subsequent reactions
    1. Wheals, papules, vesicles

Differential Diagnosis:

  • Bedbugs
  • Fleas
  • Lice
  • Mosquitoes
  • Scabies
  • Spiders
  • Ticks

Treatment:

  • Vacuuming
  • Heat or cold treatment
  • Trapping - use plastic encasements to trap bedbugs and prevent migration to and from hiding spots
  • Pesticides
  • Can use petroleum jelly on legs of furnature to prevent ascending

References:

  • AFP Vol 86 No 7 Oct 2012

Best treatment for mild-mod acne vulgaris

  1. adapalene/benzoyl peroxide (EpiDuo)
  2. clindamycin/benzoyl peroxide (Neuac)
  3. adapalene (Differin)

Reference:

  • AFP Vol 106 No 6 Dec 2022

Burns

Refer to a Burn Center:

  • Burns to the face, hands, feet, major joints, genitalia, or perineum
  • Children in health care facilities without staff trained to treat children or appropriate equipment for children
  • Concurrent trauma
  • Electrical or chemical burns
  • Full-thickness (third-degree) burns at any age
  • Greater than 10% total body surface area involved
  • Inhalation injuries
  • Need for special support (social, emotional, rehabilitative)
  • Preexisting medical issues that may complicate treatment or recovery or increase mortality risk

Topical Agents:

  • Bacitracin
  • Impregnated nonadherent gauze (Xeroform, Vaseline gauze)
  • Mafenide acetate (Sulfamylon)
  • Medical grade honey
  • Mupirocin
  • Silver sulfadiazine (Silvadene)

References:

  • AFP Vol 101 No 8 Apr 2020

Carcinomas (Basal Cell and Cutaneous Squamous Cell)

Comparison of Basal Cell and Cutaneous Squamous Cell Carcinoma

Characteristics Basal cell carcinoma Cutaneous squamous cell carcinoma
Patient age Uncommon in adults younger than 40; up to 20% of tumors occur in adults younger than 50 Uncommon in adults younger than 50
Patient characteristics Fair skin, blue eyes, red or light-colored hair, inability to tan Few, if any, identifiable phenotypic markers associated with high risk
Tumor location Most tumors (85%) occur on the head and neck region, with 25% to 30% occurring on the nose; does not correlate well with areas of maximal sun exposure; approximately one-third occur on areas that receive little or no ultraviolet exposure More common on the back of the hands and forearms; tumors on the head and neck are most common on areas that receive maximal sun exposure
Ultraviolet light exposure Weaker association; exposure in childhood and adolescence more important Stronger association; cumulative exposure more important

Biopsy:

  • Initial tissue sampling is typically performed using a shave technique if the lesion is raised
  • Can alternatively use a punch biopsy of the most abnormal-appearing skin
  • Pigmented lesions and those with any features concerning for melanoma risk should always be evaluated using a full-thickness technique

Risk Stratification of Low- vs. High-Risk Basal Cell Carcinoma

Basal cell and squamous cell carcinoma (clinical)        
Parameters Low risk High risk    
Location* and size† Low-risk location and < 20 mm Moderate-risk location‡ and < 10 mm — Low-risk location and ? 20 mm Moderate-risk location and ? 10 mm High-risk location§    
Borders Well defined Poorly defined    
Primary vs. recurrent Primary Recurrent    
Immunosuppression No Yes    
Site of prior radiation therapy No Yes    
Basal cell carcinoma (pathologic)        
Parameters Low risk High risk    
Growth pattern Superficial, nodular     Aggressive¶
Perineural involvement No Yes    
Squamous cell carcinoma (pathologic)        
Parameters Low risk High risk    
Degree of differentiation Well or moderately differentiated Poorly differentiated    
High-risk histologic subtype** No Yes    
Depth (thickness or Clark level)†† < 2 mm or I, II, III ? 2 mm or IV, V    
Perineural, lymphatic, or vascular involvement No Yes    

Low-risk location = trunk and extremities excluding hands, feet, nail units, pretibia, and ankles; Moderate-risk location = cheeks, forehead, scalp, neck, and pretibia; High-risk location = central face, eyelids, eyebrows, periorbital skin, nose, lips, chin, mandible, preauricular and postauricular skin/sulci, temple, ear, genitalia, hands, and feet.

Management (National Cancer Care Network guidelines)

  • BCC:
    • Excision of low-risk primary BCC with a 4-mm margin of uninvolved skin around the tumor
    • Incomplete excision of the primary tumor (i.e., pathology demonstrating tumor at the surgical margin) should be followed by immediate re-excision or Mohs micrographic surgery
  • CSCC:
    • Excision of low-risk primary CSCC with a 4-mm to 6-mm margin of uninvolved skin around the tumor
    • Mohs micrographic surgery is an appropriate option for high-risk tumors or tumors in sensitive anatomic locations

Post Diagnosis Management:

  • Annual screening of the patient for new primary skin cancers, including BCC, CSCC, and melanoma

References:

  • AFP Sep 2020 Vol 102, No 6

Cellulite   edit

[2024-08-12 Mon 15:41]

Products containing caffeine may dehydrate cells, which can make cellulite less obvious. To maintain the results, you’ll have to apply the product every day.

A product that contains 0.3% retinol may also have some effect on cellulite. Some women who’ve used it say they see a little less cellulite. Retinol can help thicken the skin, which may reduce how much cellulite you see. Before you’ll know if retinol can help you, you’ll need to apply the product for 6 months or possibly longer.

If you’re interested in trying a cellulite cream or lotion, it helps to test it on a small area first. Some people have an allergic skin reaction.

Treatment type Brand
Topical agents Bliss, Clarins, Shisheido, Glytone
Radiofrequency devices Venus Legacy (Venus Concept), Endymed PRO (Endymed), Velashape (Cynosure)
Laser/light devices Cellulaze (Cynosure)
Acoustic wave therapy Z-wave (Zimmer), Cellactor (Storz)
Subcision Cellfina (Merz)
Injectable biologic treatments EN3835 (Endo)
Fillers Calcium hydroxyapatite (Radiesse), poly-l-lactic acid (Sculptra)

Topical agents, combined with vigorous massage, were the earliest attempts to treat cellulite. As with all topical treatments, the main challenge of these therapies is for the active ingredients to reach their target in sufficient concentration to have a therapeutic effect. Methylxanthines (aminophylline, theophylline, and caffeine) and retinoids have been the most extensively evaluated ingredients used in topical formulations for cellulite.

Methylxanthines are hypothesized to improve cellulite by stimulating lipolysis and inhibiting the enzyme phosphodiesterase, which increases the concentration of cyclic adenosine monophosphate. Retinoids, on the other hand, are thought to reduce cellulite by increasing dermal thickness, increasing angiogenesis, synthesizing new connective tissue components, and increasing the number of active fibroblasts. For both agents, there have been several peer-reviewed publications with promising data, but the studies have been small with no long-term follow-up.

Reference:

Chronic Urticaria

Treatment:

  • Start second generation H1 antihistamine
  • If insufficient do one of the following:
    • Titrate second generation H1 antihistamine to 2 to 4 times normal dose
    • Add a different second generation H1 antihistamine
    • Add H2 antihistamine
    • Add first-generation H1 antihistamine at night
    • Add leukotriene receptor antagonist
  • If insufficient
    • Add high-potency antihistamine hydroxyzine or doxepin and titrate as tolerated
  • If insufficient
    • Consider referral for immunomodulatory therapy such as omalizumab or cyclosporine

Urticaria Causes:

  • Immunoglobulin E mediated (IgE)
    • Aeroallergens
    • Contact allergen
    • Food allergen
    • Insect venom
    • Medications
    • Parasitic infections
  • Non-IgE immunologically mediated
    • Aeroallergens (proteases)
    • Autoimmune disease
    • Bacterial infections
    • Cryoglobulinemia
    • Fungal infections
    • Lymphoma
    • Vasculitis
    • Virla infections
  • Nonimmunologically mediated
    • Contact allergen
    • Elevation of core body temperature
    • Food pseudoallergens
    • Light
    • Mastocystosis
    • Medications (direct mast cell degranulation)
    • Physicla stimuli (cold, heat, pressure, vibration)
    • Water

Conditions confused with urticaria

  • Arthropod bites
    • Lesions lasting several days, insect exposure history
  • Atopic dermatitis
    • Maculopapular, scaling, characteristic distribution
  • Bullous pemphigoid
    • Lesions lasting >24hrs, blistering, Nikolsky sign (light friction causes erosion or vesicle)
  • Contact dermatitis
    • Indistinct margins, papular, persistent lesions, epidermal component present
  • Erythema multiforme
    • Lesions lasting several days, iris-shaped papules, target appearance, may have fever
  • Fixed-drug reactions
    • Offending drig exposure, not pruritic, often bullous, hyperpigmentation
  • Henoch-Schonlein purpura
    • Lower extremity, purpuric lesions, systemic symptoms
  • Mastocytoma
    • Yellow to orange pigmentation, Darier sign (a wheal and flare up reaction with stroking the lesion), flushing, bullae, most common in children
  • Mastocytosis, diffuse cutaneous
    • Normal to yellow-brown skin color, diffuse thickening, bullae
  • Morbilliform drug reactions
    • Maculopapular, associated with medication use
  • Pityriasis rosea
    • Lesion lasting weeks, herald patch, Christmas tree pattern, often not pruritic
  • Urticaria pigmentosa
    • Smaller lesions (1-3 mm), orange to brown pigmentation, Darier sign
  • Viral exanthem
    • Not pruritic, prodrome, fever, maculopapular, individual lesions lasting days

References:

  • AFP Vol 95 No 11 Jun 2017

Common Benign Skin Tumors   edit

Table 19: Common Benign Skin Tumors
Condition Characteristics Differential diagnosis Treatment Comments Precautions and referral criteria
Acrochordon Skin-colored to brown papules on narrow stalk Senescent intradermal nevus Cryosurgery, electrodesiccation, scissor or shave excision Do not send multiple specimens in same jar Cryosurgery should be performed with caution in persons with darker skin; refer patients with eyelid involvement
Cherry angioma Dome-shaped, small, bright red to violaceous, soft, compressible papules Pyogenic granuloma Electrodesiccation, laser ablation Numerous lesions (hundreds) and early onset can occur in Fabry disease Genetic evaluation for Fabry disease in patients with multiple lesions
Dermatofibroma Firm, raised, tan to reddish-brown papules or nodules; dimpling with lateral compression Cellular dermatofibroma, dermatofibrosarcoma protuberans Cryosurgery, intralesional steroid injection, laser ablation, punch excision Abrupt appearance of multiple lesions may occur in persons with human immunodeficiency virus infection or systemic lupus erythematosus Refer patients with cellular variant and dermatofibrosarcoma protuberans (deep invasion and metastases)
Epidermal inclusion cyst Firm, mobile, subcutaneous nodule with central punctum; painless (unless inflamed) Lipoma, abscess (vs. inflamed cyst) Excision, intralesional steroid injection with interval excision for inflamed cysts Presence of punctum helps differentiate cysts from lipomas; history helps differentiate between inflamed cyst and abscess (acute) Inflamed cysts and those that have undergone previous incision and drainage can be more difficult to excise; refer patients with facial cysts
Keratoacanthoma Rapidly growing, dome-shaped hyperkeratotic papule on sun-damaged skin Squamous cell carcinoma, verruca, hypertrophic actinic keratosis Excision, intralesional injection (methotrexate, fluorouracil, bleomycin), Mohs micrographic surgery Cannot be histologically differentiated from squamous cell carcinoma Refer patients with recurrence after complete excision
Lipoma Soft, mobile subcutaneous nodules Epidermal inclusion cyst, liposarcoma, deep hemangioma Incision or punch excision and manual expression Ultrasonography can help differentiate lipomas from other deep neoplasms Use caution with facial lipomas and recurrent lesions after excision
Pyogenic granuloma Rapidly growing, yellow to violaceous, friable nodule, often surrounded by scaly collarette Amelanotic melanoma, Spitz nevus, basal cell carcinoma, squamous cell carcinoma Laser ablation, shave excision with electrodesiccation of base Send for histologic evaluation to rule out melanoma Refer patients with recurrent lesions or facial lesions
Sebaceous hyperplasia Dome-shaped papule with central umbilication and uniform yellow lobules on magnification Basal cell carcinoma Chemical cautery, cryosurgery, electrodesiccation, laser ablation, oral isotretinoin, phototherapy, shave excision Thin shave biopsy can rule out basal cell carcinoma Basal cell carcinoma is generally red or pink and increases in size
Seborrheic keratosis Well-circumscribed, yellow to brown, "stuck-on" papules and plaques Atypical nevus, melanoma Cryosurgery, curettage, electrodesiccation, laser ablation, shave excision Consider malignancy workup for abrupt appearance of multiple lesions  

Dermatology Procedures

See also:

Skin Closure

Suture Materials:

Absorbable

Material Needle type Tie to lose 50% strength Configuration Typical use
Chromic Reverse cutting 10-14 days Monofilament Mucosa, eye wounds
Glycolide/lactide polymer Conventional or 2-3 weeks Braided Deep dermal, muscle, fascia,
(Vicryl) reverse cutting     oral mucosa, genitalia wounds
Polioglecaprone Conventional or 7-10 days Monofilament Dermal, subcuticular wounds
(Monocryl) reverse cutting      
Polydioxanone Reverse cutting 4 weeks Monofilament Muscle, fascia, dermal wounds

Nonabsorbable

Material Needle Type Time to lose 50% strength Configuration Typical use
Nylon (Ethilon) Cutting edge >10 years Monofilament Skin
Polypropylene Tapered point, Indefinite Monofilament Vascular surgery, skin, tendon,
(Prolene) blunt tip     and ligaments
Silk No needle 1 year Braided Hemostasis in ligation of vessels
        or for tying over bolsters

Suture removal timing:

Location Removal Timing
Face 3-5d
Scalp 7-10d
Arms 7-10d
Trunk 10-14d
Legs 10-14d
Hands or feet 10-14d
Palms or soles 14-21d

Criteria for Tissue Adhesives:

  • Wound less than 12 hours old
  • Linear
  • Hemostatic
  • Not crossing a joint
  • Not crossing a mucocutaneous junction
  • Not in a hair-bearing area
  • Not under significant tension
  • Not grossly contaminated
  • Not infected
  • Not devitalized
  • Not a result of a mammalian bite
  • No chronic condition that might impair wound healing

References:

  • AFP Vol 78 No 8 Oct 2008
  • AFP Vol 95 No 10 May 2017

Biopsy techniques

Sterile gloves offer no benefit for minor outpatient skin procedures

  • No difference in risk of infection for common outpatient skin procedures such as laceration repair or lesion excision.
  • Relative risk of infection: Non-significant 0.95 (95% CI 0.65 to 1.40)

References:

  • AFP Vol 97 No 9 May 2018

Dermoscopy

The Two-Step Algorithm

  1. Step 1 - Determine if lesion is melanocytic or not
    1. Determine if lesion is benign or malignant
  2. Step 2 - Determine if lesion is a Nevus, Suspicious, or Melanoma
    1. Determine if need to biopsy or not
    2. Determine if digital monitoring (never for raised lesions)

A lesion is Melanocytic if it:

  1. Has a network (Except in the following:)
    • Dermatofibroma (fine network surrounding central scar)
    • Solar lentigo (fine interrupted lines and moth eaten border)
    • Ink blot lentigo
  2. Aggregated or peripheral rim of globules
    • Usually in growing nevi
  3. Streaks
    • Usually = bad
    • Think biopsy
    • Spitz nevus - juvenile melanoma
  4. Homogenous blue pigment
    • Blue nevus

Example images:

References:

Non-Melanocytic Lesions

Benign:

  1. Dermatofibroma
    1. Delicate network
    2. Central scar-like/crystalline
    3. Ring like globules
    4. Vessels/blush in center
  2. Seborrheic keratoses
    1. Milia-like cysts
    2. Comedo like openings
    3. Fissures and ridges (gyri and sulci)
    4. Fingerprint like
    5. Hairpin vessels
    6. Moth-eaten borders
  3. Hemangioma (vascular lesions)
    1. red
    2. maroon
    3. blue
    4. black
    5. clear
  4. Clear Cell Acanthoma
    1. Dotted or glomerular vessels distributed in a serpiginous pattern (string of pearls)

Malignant:

  1. Basal Cell Carcinoma (at least 1 of the following)
    1. Large grey-blue ovoid nests
    2. Multiple grey-blue globules
    3. Leaflike areas
    4. Spoke wheel areas
    5. Arborizine "tree like" telangiectasia
    6. Ulceration
  2. Squamous Cell Carcinoma - Focally scaly/keratotic and rough
    1. Glomerular vessels
    2. Hairpin vessels
    3. Keratin pearls and white circles
    4. Rosettes (strawberry pattern)
    5. Brown dots/globules aligned in a linear fashion at the periphery

Melanocytic Lesions

Benign Patterns:

  1. Diffuse Reticular
  2. Patchy Reticular
  3. Peripheral reticular with central hypopigmentation
  4. Peripheral reticular with central hyperpigmentation
  5. Homogenous
  6. Peripheral globules/starburst
  7. Peripheral reticular with central globules
  8. Globular
  9. Two components
  10. Symmetric multi-component (controversial)

Melanomas:

  • Melanomas deviate from benign patterns.
  • Have one of the specific features:
    1. Atypical network
    2. Negative pigment network
    3. Streaks
    4. Off-centered blotch
    5. Atypical dots and/or globules
    6. Regression structures
      1. Scar-like depigmentation and peppering - can have appearance of blue-white veil
    7. Blue-white veil overlying raised areas
    8. Atypical vascular structures
      1. Dotted vessels over milky red backgrounds
      2. Serpentine vessels
      3. Polymorphous vessels
    9. Shiny white lines (Crystalline structures)
    10. Peripheral tan structureless areas

Vasculature

Non-melanocytic lesions:

  1. Hairpin - keratinizing tumors
  2. Glomerular - SCC
  3. Arborizing - BCC
  4. Crown - Seborrheic hyperplasia
  5. Dotted in serpiginous distribution - CCA

Melanocytic lesions:

  1. Comma - IDN
  2. Dotted - MM & Spitz & DN
  3. Linear and polymorphous - MM
  4. Corkscrew - MM (Mets)
  5. Irregular hairpin (serpentine) - MM & CMN
  6. Milky red area

Management

  1. Benign pattern -> Reassure
  2. Deviates from benign -> Biopsy
  3. For flat only slightly suspicious lesions that patients want to wait:
    • Photograph
    • Re-evaluate and rephotograph in 3mo
    • If changing -> biopsy

Palms/Soles - parallel pattern is expected:

  • If run in furrows -> benign
  • If parallel pattern runs on peaks -> melanoma

Face - pseudo-network pattern due to gland openings

Other

Notes:

  • Photograph all lesions biopsied
    • Clinical
    • Dermatoscope

Other Resources:

Folliculitis

Definition:

  • Inflammation of the hair follicle 2/2 mechanical trauma, irritation, or infection
  • Usual infectious organism is S aureus, also gram neg (after prolonged topical Ax) and pitysporum (saprophytic yeast) as well
  • Pustules in clusters on hair-bearing areas of body.

Treatment:

  • Pityrosporum:
    • First Line: Topical econazole (III), selenium sulfide shampoo (III), or 50% propylene glycolor etoconazole  (III) - 3 weeks treatment
    • Second line: Oral fluconazole (II), itraconazole (I), or ketoconazole (II) - 10-14 days
    • Third line: Oral antifungal plus topical agents (II)
  • Bacterial:
    • First line: Topical mupirocin (I), erythromycin (III), clindamycin (III), or benzoyl peroxide (III) - treat until lesions resolvedd
    • Second line: Oral antistaphylococcal antibiotics (flouroquinolones(I), first gen cephalosporins (III), or macrolides (III))
  • Gram negatives:
    • First line: Isotretinoin (II)
    • Second line: Ampicillin (III) or trimethoprim-sulfamethoxazole (III)

References:

  • Cheung M, Taher M, Lauzon G., Acneiform facial eruptions, Canadian Fam Phys, Vol 51; April 2005; 527-533

Hair Loss   edit

Hair loss is a common problem that may be improved with vitamin and mineral supplementation. Vitamins and minerals are important for normal cell growth and function and may contribute to hair loss when they are deficient. While supplementation is relatively affordable and easily accessible, it is important to know which vitamins and minerals are helpful in treating hair loss.

Androgenetic alopecia (AGA), telogen effluvium (TE) are two common types of hair loss. Studies show that supplementing the diet with low levels of vitamin D can improve symptoms of these diseases. If a patient with AGA or TE has low iron levels (more commonly seen in females), supplementation is also recommended. These iron-deficient patients should also ensure their vitamin C intake is appropriate. At the present time there is insufficient data to recommend zinc, riboflavin, folic acid, or vitamin B12 supplementation in cases of deficiency. Neither vitamin E or biotin supplementation are supported by the literature for treating AGA or TE; in addition, biotin supplementation can also lead to dangerous false laboratory results. Studies show that too much vitamin A can contribute to hair loss, as can too much selenium, although more studies are needed to establish the latter relationship.

Alopecia areata (AA) occurs when the immune system attacks the hair follicle. Studies have shown a relationship between AA and low vitamin D levels. Vitamin D should be supplemented if levels are low. However, more studies are needed to determine the effect of iron and zinc supplementation on AA patients. There is currently not enough data to recommend supplementation of folate or B12. Biotin supplementation is not supported by available data for the treatment of AA. It is unclear if selenium plays a role in this disease; therefore, supplementation with this mineral is not recommended.

Iron, vitamin D, folate, vitamin B12, and selenium are vitamins and minerals that may be involved in hair graying/whitening during childhood or early adulthood. Supplementing these deficient micronutrients can improve premature graying.

Reference:

Hidradenitis suppurativa

Hair removal from shaving or using depilatories, deodorants, and irritation from anything rubbing against the affected area can worsen the condition.

The Hurley classification system is used to define severity and guide treatment.

  • Stage I: single or multiple abscesses without sinus tracts or scarring
    • Medical
      • First line: Topical clindamycin
      • Second line: Topical resorcinol
    • Surgical
      • Punch debridement
      • Drain painful abscess
      • Intralesional triamcinolone
  • Stage II: abscess recurrence with sinus tracts and scarring; widely separated lesions
    • Medical (Topical Clindamycine AND)
      • First line: Tetracycline Abx
      • Second line: Adalimumab (Humira)
      • Third line: Acitretin, oral clindamycin plus rifampin
    • Surgical
      • Local excision for larger, chronic lesions or sinus tracts
  • Stage III: diffuse skin involvement with multiple sinus tracts and widespread abscess formation
    • Medical (Topical Clindamycine AND)
      • First line: Adalimumab
      • Second line: Infliximab (Remicade), anakinra (Kineret), oral clindamycin plus rifampin

Reference:

  • Am Fam Physician. 2019;100(9):562-569

Self-Care Guidelines (for patients)

It may also help if you can avoid things that can irritate your skin, by:

  • Wearing loose-fitting clothing
  • Avoiding heat and humidity
  • Being careful not to injure your skin
  • Staying at a healthy weight
  • Don't smoke

For draining lesions:

  • Make sure to wash any red, draining area(s) of hidradenitis suppurativa with an antibacterial soap, and then apply antibiotic ointment and clean bandages.
  • If there is a large amount of drainage, change the gauze pads and dressings often.
  • Warm compresses and ibuprofen can help reduce the swelling.

More information: https://familydoctor.org/condition/hidradenitis-suppurativa/?adfree=true

Hyperpigmentation

Postinflammatory Hyperpigmentation

First-line topical therapies

  • hydroquinone 4%
  • Triple combination therapy (Tri-Luma)
    • fluocinolone 0.01%
    • hydroquinone 4%
    • tretinoin 0.05%
  • This triple combination therapy is more effective but more costly than hydroquinone alone

Reference:

  • Am Fam Physician. 2023;107(5):461

Infections, Insect bites, and Stings

See also: Cutaneous Larva Migrans

There are also risk factors for a systemic sting reaction:

  • A sting reaction < 2 months earlier increases the risk of a subsequent systemic sting reaction by ≥ 50%.
    • Pucci S, Antonicelli L, Bilò MB, et al. Shortness of interval between two stings as risk factor for developing Hymenoptera venom allergy. Allergy.1994;49:894-896.
  • Among beekeepers, paradoxically, the risk of a systemic reaction is higher in those stung < 15 times a year than in those stung > 200 times.
    • Müller UR. Bee venom allergy in beekeepers and their family members. Curr Opin Allergy Clin Immunol. 2005;5:343-347.
  • Patients with an elevated baseline serum level of tryptase (reference range, < 11.4 ng/mL), which is part of the allergenic response, or with biopsy-proven systemic mastocytosis are at increased risk of a systemic sting reaction.

Bee stings:

  • Among beekeepers, the risk of a systemic reaction is higher in those stung < 15 times a year than in those stung > 200 times.
  • Remove honey bee stingers by scraping the skin with a fingernail or credit card. Ideally, the stinger should be removed in the first 30 seconds, before the venom sac empties. Otherwise, intense local inflammation, with possible lymphangitic streaking, can result

Centipede

  • The bite of a larger centipede can cause a painful reaction that generally subsides after a few hours but can last several days. Centipede bites are usually nonfatal to humans

Spiders

  • brown recluse spider is described as having a violin-shaped marking on the abdomen; the body is yellowish, tan, or dark brown. A bite can produce tiny fang marks and cause dull pain at the site of the bite that spreads quickly; myalgia; and pain in the stomach, back, chest, and legs.28,29 The bite takes approximately 7 days to resolve.
  • black widow spider is black; females exhibit a distinctive red or yellow hourglass marking on their ventral aspect.28,31 The pinprick sensation of a bite leads to symptoms that can include erythema, swelling, pain, stiffness, chills, fever, nausea, and stomach pain.

Fleas

  • Flea bites, which generally occur on lower extremities, develop into a small, erythematous papule with a halo (FIGURE 4) and associated mild edema, and cause intense pruritus 30 minutes after the bite.
  • Fleas are a vector for severe microbial infections, including bartonellosis, bubonic plague, cat-flea typhus, murine typhus, cat-scratch disease, rickettsial disease, and tularemia. Tungiasis is an inflammatory burrowing flea infestation—not a secondary infection for which the flea is a vector

Flies and biting midges

  • include black flies, deer flies, horse flies, and sand flies
  • Flies can transmit several infections, including bartonellosis, enteric bacterial disease (eg, caused by Campylobacter spp), leishmaniasis, loiasis, onchocerciasis, and trypanosomiasis.43
  • Biting midges, also called "no-see-ums," biting gnats, moose flies, and "punkies,"44 are tiny (1-3 mm long) blood-sucking flies

Mosquitoes

  • Advise patients to reduce their risk by using insect repellent, sleeping under mosquito netting, and wearing a long-sleeve shirt and long pants when traveling to endemic areas or when a local outbreak occurs

Ticks

  • Ticks should be removed with fine-tipped tweezers. Grasp the body of the tick close to the skin and pull upward while applying steady, even pressure. After removing the tick, clean the bite and the surrounding area with alcohol or with soap and water. Dispose of a live tick by flushing it down the toilet; or, kill it in alcohol and either seal it in a bag with tape or place it in a container

Symptom control

  • Symptomatic treatment of mild bites and stings includes washing the affected area with soap and water and applying a cold compress to reduce swelling.54 For painful lesions, an oral analgesic can be prescribed.
  • For mild or moderate pruritus, a low- to midpotency topical corticosteroid (eg, hydrocortisone valerate cream 0.2% bid), topical calamine, or pramoxine can be applied,or a nonsedating oral antihistamine, such as loratadine (10 mg/d) or cetirizine (10 mg/d), can be used.14,55 For severe itching, a sedating antihistamine, such as hydroxyzine (10-25 mg every 4 to 6 hours prn), might help relieve symptoms; H1- and H2-receptor antagonists can be used concomitantly.
  • Large local reactions are treated with a midpotency topical corticosteroid (eg, triamcinolone acetonide cream 0.1% bid) plus an oral antihistamine to relieve pruritus and reduce allergic inflammation. For a more severe reaction, an oral corticosteroid (prednisone 1 mg/kg; maximum dosage, 50 mg/d) can be given for 5 to 7 days
  • Managing anaphylaxis
    • First-line therapy is intramuscular epinephrine, 0.01 mg/kg (maximum single dose, 0.5 mg) given every 5 to 15 minutes
    • Administration of O2 and intravenous fluids is recommended for hemodynamically unstable patients.
    • Antihistamines and corticosteroids can be used as secondary treatment but should not replace epinephrine

References:

  • JFP Dec 2020 Vol 69 No 10

Ingrown Nail   edit

[2024-04-08 Mon 09:41]

Things to do to help an ingrown nail:

  • Soak your foot in warm, salty water to help soften the skin around your toe and reduce the chances of infection
  • Keep your foot dry for the rest of the day
  • Wear wide, comfortable shoes or sandals
  • Take acetaminophen (Tylenol) or ibuprofen to ease the pain
  • Do not cut your toenail – leave it to grow out
  • Do not pick at your toe or toenail
  • Do not wear tight, pointy shoes

To prevent ingrown toenails:

  • Do not cut your toenails too short
  • Cut straight across the nail, not the edges
  • Do not wear shoes that are too tight or do not fit properly
  • Keep your feet clean and dry them thoroughly

Keloids and Hypertrophic Scars

Table 20: Hypertrophic Scars vs. Keloids
Hypertrophic scars Keloids
Remain confined to border of original wound Extend beyond border of original wound
Arise in any location; commonly occur on extensor surfaces of joints Commonly occur on the sternal skin, shoulders and upper arms, earlobes, and cheeks
Regress with time Grow for years
Fewer thick collagen fibers Thick collagen
Scanty mucoid matrix Mucoid matrix
Flatten spontaneously in time Remain elevated more than 4 mm
Appear within one month Appear at three months or later
Less association with skin pigmentation More common in darker skin types

Prevention:

  • Anything that expedites wound healing and diminishes skin tension (e.g., postsurgical taping for 12 weeks) will diminish risk.

Corticosteroid Injections

  • first-line option for family physicians.
  • Triamcinolone acetonide suspension (Kenalog) 10 to 40 mg per mL (depending on the site) is injected intralesionally
    • will eventually flatten 50 to 100 percent of keloids
    • 9 to 50 percent recurrence rate.
    • Lidocaine (Xylocaine) may be combined with the corticosteroid to lessen pain, whereas using adjunctive cryotherapy immediately before injection may make the procedure easier by softening the scar (based on expert opinion).
    • Combining cryotherapy and corticosteroid injections also improves outcomes more than either modality alone, although hypopigmentation is always a significant concern.
    • Usually 2-3 injections are given a month apart; however, therapy can continue for six months or longer.25
    • Newer keloids are more responsive to therapy than older, established lesions.
    • Common adverse effects include atrophy, telangiectasias, and hypopigmentation.
  • 1 mL polycarbonate syringe with a 25 G, 16 mm needle was the combination requiring the lowest injection force
  • Clinically, the response to corticosteroid injection alone was variable with 50–100% regression and a recurrence rate of 33% and 50% after 1 and 5 years, respectively

Reference:

  • Am Fam Physician. 2009;80(3):253-260
  • Morelli Coppola M, Salzillo R, Segreto F, Persichetti P. Triamcinolone acetonide intralesional injection for the treatment of keloid scars: patient selection and perspectives. Clin Cosmet Investig Dermatol. 2018 Jul 24;11:387-396. doi: 10.2147/CCID.S133672. PMID: 30087573; PMCID: PMC6063260.

Lice Treatment

A few notes on lice treatment:

  • Do not use a combination shampoo/conditioner, or conditioner before using lice medicine.
  • Do not re–wash the hair for 1–2 days after the lice medicine is removed.
  • After each treatment, checking the hair and combing with a nit comb to remove nits and lice every 2–3 days may decrease the chance of self–reinfestation. Continue to check for 2–3 weeks to be sure all lice and nits are gone.
  • Machine wash and dry clothing, bed linens, and other items that the infested person wore or used during the 2 days before treatment using the hot water (130°F) laundry cycle and the high heat drying cycle. Clothing and items that are not washable can be dry–cleanedORsealed in a plastic bag and stored for 2 weeks.
  • Soak combs and brushes in hot water (at least 130°F) for 5–10 minutes.
  • Vacuum the floor and furniture, particularly where the infested person sat or lay. However, the risk of getting infested by a louse that has fallen onto a rug or carpet or furniture is very small. Head lice survive less than 1–2 days if they fall off a person and cannot feed; nits cannot hatch and usually die within a week if they are not kept at the same temperature as that found close to the human scalp. Spending much time and money on housecleaning activities is not necessary to avoid reinfestation by lice or nits that may have fallen off the head or crawled onto furniture or clothing.
  • Do not use fumigant sprays; they can be toxic if inhaled or absorbed through the skin

Reference:

Medications

  • Topical Antibiotics
    • Clindamycin, Erythromycin, Metronidazole
    • Uses: Mild/Mod acne/rosacea
  • Topical Keratolytics
    • Retinoids, Benzoyl peroxide, Salicylic acid, Azelaic acid
    • Uses: Acne, rosacea
  • Topical Anti-inflammatory agents
    • Azelaic acid, Topical corticosteroids, Tars
  • Topical Anti-fungals
    • Azoles, Allylamines, Benzoyl peroxide, Selenium sulfide, Pyrithione zinc
    • Uses: Seborrheic dermatitis, Malassezia folliculitis
  • Topical Miscellaneous
    • Sodium sulfacetamide, sulfer, tar, Ivermectin, Brimonidine
  • Systemic Antibiotics
    • Tetracyclines, Erythromycin, Sulfas
    • Uses: Mod/Severe acne/rosacea
  • Systemic Retinoids
    • Isotretinoin
    • Uses: Nodulocystic, severe acne; select severe rosacea
  • Oral contraceptives

References:

  • Consultant Oct 2015

Nevus

The "ABCDE" rule describes the features of early melanoma. These features are:

  • Asymmetry - The shape of one half does not match the other half.
  • Border that is irregular - The edges are often ragged, notched, or blurred in outline. The pigment may spread into the surrounding skin.
  • Color that is uneven - Shades of black, brown, and tan may be present. Areas of white, gray, red, pink, or blue may also be seen.
  • Diameter - There is a change in size, usually an increase. Melanomas can be tiny, but most are larger than 6 millimeters wide (about 1/4 inch wide)
  • Evolving - The mole has changed over the past few weeks or months.
  • Funny Looking - Ugly Duckling

Reference:

  • Daniel Jensen J, Elewski BE. The ABCDEF Rule: Combining the "ABCDE Rule" and the "Ugly Duckling Sign" in an Effort to Improve Patient Self-Screening Examinations. J Clin Aesthet Dermatol. 2015 Feb;8(2):15. PMID: 25741397; PMCID: PMC4345927.
  • https://moles-melanoma-tool.cancer.gov/#/

Atypical Nevus Management

General information:

  • Sun avoidance and protection
  • Regular physician followup at least every 12 mo
  • Screen family members
  • Use diagnostic aids such as total body photography and dermoscopy
  • Biopsy of suspicious lesions
  • Instruct patients in self-examinations

Management:

  • 2mm margins to avoid reexcision
  • Re-excise with 2-5mm margins if there is involvement of margins
  • If severe cytologic atypia, do a 5mm margin

References:

  • AFP vol 78 No 6 Sep 2008

nonscarring hair and scalp disorders

Labs: Obtain the following tests:

  • Complete blood count with red blood cell indices (to assess for anemia)
  • Complete metabolic panel (to assess for signs of underlying disease)
  • Thyroid-stimulating hormone (to assess for a thyroid disorder) (see "Laboratory assessment of thyroid function", section on 'Evaluating for thyroid dysfunction')
  • Ferritin (to assess iron storage) (see "Causes and diagnosis of iron deficiency and iron deficiency anemia in adults", section on 'Iron studies (list of available tests)')
  • 25-hydroxyvitamin D levels (to assess for vitamin D deficiency) [17]

The selection of additional laboratory studies is guided by the need to rule out disorders in the differential diagnosis or to further investigate patients with signs or symptoms suggestive of a particular underlying disease, nutritional deficiency, heavy metal or other toxin exposure, or other causes of hair loss. As examples, a hormonal work-up to rule out hair loss related to hyperandrogenemia would be appropriate in women with signs of virilization, acne, and obesity, and further evaluation with antinuclear antibodies (ANAs) or other studies would be appropriate for a patient with signs or symptoms of an underlying autoimmune disease. In addition, dietary history may reveal nutritional deficiencies that should be evaluated.

  • Telogen effluvium is a form of diffuse, nonscarring hair loss that presents as a transient or chronic loss of hair (picture 1A-C). Hair loss in telogen effluvium occurs as a result of an abnormal shift in follicular cycling that leads to the premature shedding of hair. A wide variety of endogenous and exogenous factors have been linked to the induction of telogen effluvium. Examples include major surgery, serious illness, childbirth, protein or caloric malnutrition, drugs, and severe emotional distress. In some cases, the inciting cause is unclear or multiple inciting triggers are identified.
  • Anagen effluvium – Anagen effluvium is an acute loss of anagen hair fibers secondary to chemotherapy or toxin exposure and represents acute loss of greater than 80 percent of the scalp hair. Exclamation point hairs (short, 1 to 3 mm hairs with a tapered base) that result from dystrophic hair growth are a common finding. Microscopic evaluation of the proximal ends of hairs dislodged during a hair pull test demonstrates normal or dystrophic anagen hairs rather than telogen hairs. (See "Alopecia related to systemic cancer therapy".)
  • Androgenetic alopecia (male or female pattern hair loss) – Features of androgenetic alopecia that are useful for distinguishing this condition from telogen effluvium include a clinical examination that demonstrates a characteristic pattern of hair loss and miniaturized hairs (picture 7A-C). A biopsy can be useful for differentiating between these diagnoses in difficult cases. Of note, the two conditions may coexist, and telogen hair shedding can occur early in the course of androgenetic alopecia. (See "Androgenetic alopecia in males: Pathogenesis, clinical features, and diagnosis" and "Female pattern hair loss (androgenetic alopecia in females): Pathogenesis, clinical features, and diagnosis".)
  • Diffuse alopecia areata – Diffuse alopecia areata is an uncommon form of alopecia areata that is characterized by the diffuse loss of scalp hair, resulting in the appearance of generalized hair thinning (picture 8). Similar to anagen effluvium, exclamation point hairs may be present, and performance of the hair pull test may reveal dystrophic anagen hairs. A biopsy revealing an inflammatory infiltrate consistent with alopecia areata differentiates this condition from telogen effluvium. (See "Alopecia areata: Clinical manifestations and diagnosis".)
  • Loose anagen syndrome – Loose anagen syndrome is a rare, nonscarring hair loss disorder that manifests with easily extracted anagen hairs from the scalp (picture 9). Young children are typically affected, particularly females with blond hair. Characteristically, examination of shed hairs reveals anagen hairs with ruffled cuticles (picture 10).
  • Structural hair disorders – A variety of structural hair disorders causes weakening of the hair shaft that results in easily fractured hair. Unlike telogen effluvium, in which hair is shed from the follicle, these conditions result in increased breakage of hair. Close examination and 2x magnification of the loose hair will reveal broken hairs and may also reveal characteristic findings of a particular structural hair disorder.

Nonscarring Hair Loss

Hair Cycle:

  • 90% scalp hairs in anagen (growth) phase at any given time
  • 10% scalp hairs in telogen (resting) or catagen (involution) phases

Evaluation Steps

  • Is it scarring hair loss?
    • Scarring presents with:
      • pruritis
      • pain
      • erythema
      • scale
      • crust
      • obliteration of follicular pore markings leading to an abnormally smooth appearance of the skin
  • If nonscarring, what is the Distribution of loss?
    • Patterned
      • Ex: Androgenic alopecia
        • Hairline recession, increased spacing between follicles, increased visibility of scalp, and miniturized follicles
        • Most common patterned hair loss
        • Minoxidil and finasteride
    • Diffuse
      • Ex: Telogen Effluvium
        • Most common diffuse hair loss
        • An inciting event disrupts hair cycle leading to loss > 200 scalp hairs a day (Decrease hair volume >10% but <50%)
      • severe illness
      • Major surgery
      • thyroid idsease
      • pregnancy
      • Fe def anemia
      • malnutrition
      • rpid weight loss
      • Vit D def
      • Medications:
        • Using: lithium, sodium valproate, fluoxetine, warfarin, metoprolol, propranolol, retinoids, isoniaxid
        • Discontinuing: estrogen containing OCPs
        • Occurs 2-4 months after inciting event
        • Labs:
      • TSH
      • ferritin
      • 25-OH Vit D2 and D3
        • Self-limited
        • Takes 6-9 months to normalize
    • Focal
      • Ex: Alopecia Areata
        • Hair loss patches with smooth borders
        • Autoimmune often in those with atopy
        • Spontaneous regrowth in 30% patients
        • Exclamation point hairs in active areas
        • Pigmented hairs preferentially lost with regrowth initially nonpigmented or white

References:

  • JAMA Mar 2021 Vol 325 No 9

OCP and Acne

Location of hormonal acne:

  • While typical teenage acne appears most of the forehead and cheeks, the most common areas for hormonal acne to pop up are on the lower sections of the face, including around the mouth, jawline, and neck.

Hormone levels:

  • As a rule of thumb, birth control that contains a higher level of progesterone will have a stronger androgenic effect and have a higher risk of promoting acne breakouts.
  • The reduction of androgen production will reduce the blackheads, whiteheads, and inflamed red pimples typical to acne.
  • The estrogen that is used in birth control pills is almost always Ethinyl estradiol and rarely mestranol. The usual amount is 20–50 µg.

Estrogen effect provides some anti-androgenic effect through 3 mechanisms:

  • Suppress secretion of pituitary gonadotropins, inhibit ovulation, and thus inhibit androgen production by the ovaries.
  • Block the Androgen receptors
  • Increase the liver production of SHBG and reducing circulating testosterone.

Women with acne need to avoid taking progestins with potent androgenic (acne-causing) effects, i.e., levonorgestrel and norgestrel. A better choice of progestins for women with acne would be drospirenone, norgestimate, gestodene, and desogestrel with a weaker androgenic effect.

The best birth control pills for women with Acne are pills that contain drospirenone and Ethinylestradiol. Examples of these pills are

  • Yasmin,
  • Yaz,
  • Beyaz,
  • Ocella,
  • Safyral,
  • Syeda,
  • Gianvi,
  • Loryna,
  • Nikki,
  • Vestura, and
  • Zarah.

Lo Loestrin was found to cause more acne breakouts. Several other contraceptive options exacerbate or trigger acne in some women as they are higher in progestin (i.e., they increase testosterone-like activity) and low in estrogen. These include Depo-Provera (a shot), Skyla, Lylema, Implanon, and Nexplanon (a subdermal implant).

Indications of hormonal treatment in acne

  • Severe flare-ups before menstruation
  • When oral contraception is desirable
  • Acne not responding to conventional treatment
  • Polycystic ovary syndrome
  • Late onset acne (acne tarda)
  • Ovarian or adrenal hyperandrogenism

Summary of treatment recommendations from the European acne guidelines

Type of acne First-line treatment Second-line treatment Third-line treatment Hormonal alternatives for women
Comedonal acne Topical retinoids, adapalene is preferred to tretinoin Benzoyl peroxide (BPO) or azelaic acid Not recommended
Mild to moderate papulopustular acne BPO + adapalene (f.c.) or BPO + clindamycin (f.c.) BPO or azelaic acid or systemic antibiotic + adapalene Isotretinoin or tretinoin + topical erythromycin (f.c.); or systemic antibiotics + BPO; or systemic antibiotics + azelaic acid; systemic antibiotics + adapalene + BPO (f.c.) Not recommended
Severe papulopustular acne and mild nodular acne Systemic isotretinoin Systemic antibiotics + adapalene; systemic antibiotics + azelaic acid; or systemic antibiotics + BPO + adapalene (f.c.) Systemic antibiotics + BPO Hormonal antiandrogens + topical treatment or systemic antibiotics (topical treatment is preferred)
Severe nodular acne and conglobate acne Systemic isotretinoin Systemic antibiotics + azelaic acid Systemic antibiotics + BPO; or systemic antibiotics + adapalene; or systemic antibiotics + BPO + adapalene (f.c.) Hormonal antiandrogens + systemic antibiotics (consider as third line treatment)

Reference:

Onychomycosis

Confirmatory testing is generally unnecessary for clinically suspected onychomycosis.

  • The most cost-effective approach to a patient with clinically suspected onychomycosis is empiric therapy with oral terbinafine.
    • Chance of liver injury is 1:50,000 to 1:120,000
    • If using a more expensive alternative medicine, than confirmatory testing with periodic acid-Schiff stain reduces cost

References:

  • AFP Vol 97 No 9 May 2018

Paronychia

Treatment:

  1. Drainage
    • Do not inject pulp and finger pad if using anesthesia
  2. Antibiotics (typically not needed after drainage)

Risk factors:

  • Accidental trauma
  • Artificial nails
  • Manicures
  • Manipulating hangnails
  • Occupational trauma
  • Onychocryptosis (ingrown nails)
  • Onychophagia (nail biting)

Prevention:

  • Apply moisturizing lotion after washing
  • Avoid chronic prolonged exposure to contact irritants and moisture
  • Avoid nail trauma, biting, picking, manipulation, and sucking
  • Avoid trimming cuticles or using cuticle removers
  • Improve glycemic control in those with DM
  • Keep affected areas clean and dry
  • Keep nails short
  • Use rubber gloves, preferably with inner cotton glove or liner, when exposed to moisture and/or irritants

Differential Diagnosis:

  • Eczema
  • Herpetic whitlow
  • Psoriasis
  • Dermatomyositis
  • Granuloma annulare
  • Hematomas from pulse oximetry
  • Pyogenic granuloma
  • Reiter syndrome
  • Food hypersensitivity
  • Melanoma
  • Pemphigus vulgaris
  • Squamous cell carcinoma

References:

  • AFP Vol 96 No 1 Jul 2017

Perioral dermatitis

  • Unknown etiology but flouronated topical corticosteroids, subclinical irritant contact dermatitis, and overmoisturization  of skin implicated.
  • F > M
  • Discrete, symmetric pinpoint papules and pustules but not on vermillion border - might have erythematous base.
  • Treatment
    • Wean any topical steroids
    • First line: Oral tetracycline (II) (250mg bid-tid for several weeks)
    • Second line: Oral erythromycin (III)
    • Third line: Topical metronidazole (I) with or without above Abx

References:

  • Cheung M, Taher M, Lauzon G., Acneiform facial eruptions, Canadian Fam Phys, Vol 51; April 2005; 527-533

Pigmentation Disorders

Hyperpigmentation

  • Postinflammatory hyperpigmentation (acne, psoriasis, atopic and contact dermatitis, lichen planus, trauma, drugs, and fixed-drug eruptions)
    • Irregular, darkly-pigmented macules or patches
  • Melasma
    • Progressive, macular, nonscaling hypermelanosis of sun-exposed areas of the skin, primarily on the face and dorsal forearms
  • Solar lentigines
    • macular, 1- to 3-cm, hyperpigmented, well-circumscribed lesions on sun-exposed surfaces of the skin
  • Ephelides (freckles)
    • small, 1- to 2-mm, sharply defined macular lesions of uniform color, most often found on the face, neck, chest, and arms
  • Café-au-lait macules
    • tan or brown macules ranging in size from 1 to 20 cm, which are present at birth or occur early in life
  • Nevi
  • Melanoma and precursors

Hypopigmentation

  • Acquired (common)
    • Vitiligo
      • Unpigmented macules and patches, sharply defined, 5 to 50 mm, coalescent
      • an immune-mediated destruction of melanocytes
    • Pityriasis alba
    • Tinea versicolor
    • Postinflammatory hypopigmentation
  • Congenital (uncommon)
    • Albinism
    • Piebaldism
    • Tuberous sclerosis
    • Hypomelanosis of Ito
Hyperpigmentation Disorders Description Location Etiology Treatment
Postinflammatory hyperpigmentation Irregular, darkly pigmented macules/patches Previous sites of injury or inflammation Trauma, inflammation Triple combination therapy,† hydroquinone, retinoids, azelaic acid (Finacea), chemical peels, laser therapy
Melasma Pigmented, well-defined macules; light brown, brown, or gray Face (centrofacial 63%, malar 21%, mandibular 16%) or forearms Pregnancy, oral contraceptives, phenytoin (Dilantin), idiopathic Triple combination therapy,† chemical peels, light or laser therapy, sunscreen
Solar lentigines 1- to 3-cm well-circumscribed macules; light yellow to dark brown, variegated Face, hands, forearms, chest, back, shins Acute or chronic ultraviolet exposure Triple combination therapy† with or without cryotherapy, hydroquinone, retinoids, chemical peels, cryotherapy, intense pulsed light, laser therapy
Ephelides 1- to 2-mm sharply defined macules, red or tan to light brown Face, neck, chest, arms, legs Childhood onset after sun exposure in susceptible individuals (skin types I or II) Fades in winter months so treatment may be unnecessary; cryotherapy, hydroquinone, azelaic acid, chemical peels, laser therapy
Café au lait macules 1- to 20-cm tan to brown macules, epidermal, present at birth or early childhood Most commonly trunk but may appear anywhere Increased melanin in melanocytes/basal keratinocytes Laser therapy, surgical excision
Hypopigmentation disorders Description Location Etiology Treatment
Vitiligo Hypopigmented macules and patches; sharply defined; 5 to 50 mm; coalescent Face, hands, forearms, neck, genitalia, body folds, periorificial; lip-tip pattern Unknown, possibly immune-mediated High-potency topical corticosteroids (class II and III), topical calcineurin inhibitors, narrowband ultraviolet B, psoralen and ultraviolet A, systemic corticosteroids
Pityriasis alba Hypopigmented, irregular patches; fine scale; itchy Face, head, neck, forearms Possible association with atopic dermatitis aggravated by sunlight exposure Sunscreen, topical corticosteroids, tacrolimus (Protopic) ointment
Tinea versicolor Hypopigmented or pink plaques; may be hyperpigmented; fine scale Neck, chest, back, abdomen, proximal extremities Malassezia spp. infection Topical antifungals, topical adapalene (Differin) gel
Postinflammatory hypopigmentation Loss of pigment (variable), macules, patches Varies Tinea versicolor, atopic dermatitis, pityriasis alba, psoriasis, guttate parapsoriasis, dermabrasion, chemical peels, intralesional corticosteroid use Treatment of underlying condition when applicable

Reference:

  • AFP Vol 96 No 12 Dec 2017
  • Am Fam Physician. 2009;79(2):109-116

Pruritis   edit

Etiologies:

  1. Dermatologic
    • Atopic dermatitis
    • Contact dermatitis
    • Lichen simplex chronicus
    • Psoriasis
    • Urticaria
    • Xerosis
  2. Systemic
    • Autoimmune disorders
    • Chronic renal failure
    • Drug induced
    • Endocrine disorders
    • Hematologic (polycythemia vera) and HIV infection
    • Liver disease
    • Lymphoproliferative disorders
    • Malignancy
  3. Neurologic
    • Brachioradial pruritis
    • Multiple sclerosis
    • Notalgia paresthetica
    • Postherpetic neuralgia
    • Poststroke
    • Small-fiber polyneuropathy (DM one of most common causes)
  4. Psychogenic
    • Anxiety
    • Bipolar disorder
    • Delusional infestation
    • Depression
    • Obsessive-compulsive disorders
  5. Mixed
    • More than 1 cause found
  6. Other

Workup:

  • Labs
    • CBC - hematologic or malignancy suspected
    • CMP - DM, liver, or renal disease suspected
    • ESR - autoimmune disease suspected
    • TSH - hyperthyroidism suspected
    • Hepatitis panel
    • HIV
  • Imaging
    • CXR - lymphoma suspected
    • Spinal imaging (MRI) - secondary workup for brachioradial pruritis or notalgia paresthetica

Management:

  • Non-Drug
    • Warm (not hot) water for bathing
    • Apply emollient to skin immediately after bathing
    • Use hypoallergenic body products
    • Humidify indoor spaces during winter
    • Avoid fabrics and other clothing materials that irritate the skin (like wool - use cotton)
    • Wear loose fitting clothes
    • Avoid vasodilators (caffeine, alcohol, spices, and activities that promote excessive sweating like strenuous exercise)
  • Drugs
    • Antihistamines
      • Nocturnal itch, paraneoplastic itch, systemic mastocytosis
      • diphenhydramine 25-50 mg q4-6 prn
      • hydroxyzine 25 mg tid or qid
      • loratadine 10mg qd
    • Anticonvulsants
      • neuropathic itch, uremic itch
      • gabapentin 100-300mg /d
      • pregabalin 50-300 mg/d
    • Antidepressants
      • Cholestatic itch, nocturnal itch, paraneoplastic itch, pyschogenic itch, uremic itch
      • sertraline 75-100mg qd
      • paroxetine 20-40 mg qd
      • amitriptyline 10-25 mg qd to tid
      • doxepin 10mg qd or bid
      • mirtazapine 15 mg qd
    • Antipsychotics
      • Delusion of infestation
      • olanzapine 2.5-10 mg qd
      • risperidone 1-8 mg qd
    • Opioid-receptor agents
      • Cholestatic itch, uremic itch
      • naltrexone 50 mg qd
    • Bile-acid sequestrants
      • Cholestatic itch
      • cholestyramine 4-6 mg tid - 30 min before meals
      • ursodiol 13-15 mg/kg/d

References:

  • JFP Nov 2020 Vol 69, No 9

Psoriasis

Medications that trigger:

  • Lithium
  • B-blockers
  • Antimalarials
  • Angiotensin-converting enzyme inhibitors
  • NSAIDs

Treatment:

  • Localized disease
    • Topical corticosteroids LOE A for first line mild-mod
    • Coal tar
    • Vit D analogues
    • Tazarotene
    • Anthralin
    • Localized UV light/laser
    • Calcineurin inhibitors
  • Extensive disease (Mod-Severe)
    • Otezla
    • UV light
    • Methotrexate
      • If used as initial systemic and 25% reduction in PSI after 4 weeks is not achieved, switch to another systemic - LOE B
    • Retinoids
    • Cyclosporine
    • Apremilast
    • Biologicals
    • Tumore necrosis factor inhibitors

Scalp psoriasis

  • Calcipotriene foam and calcipotriene/betamethasone gel for 4-12 weeks for mild-mod severity (LOE A)

Tools:

References:

  • Consultant Feb 2016
  • AFP Dec 2023 Vol 108 No 6

Sebacceous Cysts

  • Traditional wide excision
    • Dissection and removal of the cyst completely from the surrounding tissue through an elliptical incision
    • Gold standard of treatment
    • More likely leads to significant scarring in comparison with minimal excision or punch biopsy
    • Has almost no recurrence when the cyst wall is entirely removed
  • Minimal excision and punch biopsy techniques produce minimal bleeding, have faster healing times, and produce less scarring.
    • Shorter procedural time
    • Slightly higher rates of recurrence
    • The minimal incision technique:
      • Involves kneading the lesion following injection of anesthetic and expressing the cyst contents through a 2- to 3-mm incision
      • Following expulsion of the cyst contents, the loosened capsule is delivered through the small opening
      • Closure with suture is optional
    • Punch biopsy excision:
      • Similar to the minimal excision technique except that the incision is made using a single-use disposable dermal punch following injection of lidocaine
      • Expulsion of the cyst contents, with cyst wall, via lateral pressure is performed and occasionally followed by closure with one suture

Notes:

  • Inflamed cysts should be allowed to convalesce prior to attempted removal
  • Rarely are these cysts truly infected
  • Inflammation is secondary to sebaceous cyst wall rupture with leakage of cyst contents

Reference:

  • J Fam Pract. 2007 April;56(4):315-316

Skin Protection

Sunburn protection:

  • Avoid outdoor activities during peak sun intensity (10 a.m. to 4 p.m.), even on cloudy days
  • Wear protective clothing (e.g., long sleeves, long pants, wide-brim hats) during the day
  • For patients at increased risk, consider clothing with a high UV protection factor (> 30)
  • Use sunglasses that provide 100% UVA and UVB protection
  • Use a broad-spectrum sunscreen with an SPF of at least 15
  • Use a sunscreen that is water-resistant (40 to 80 minutes of protection in the water)
  • Apply sunscreen to dry skin 15 to 30 minutes before exposure to the sun
  • Reapply sunscreen every two hours or earlier when sweating, swimming, or towel-drying
  • Discard any sunscreen older than three years

Insect repellent:

  • Repellents with 20-50% DEET protect up to several hours
    • DEET safe in 2nd and 3rd trimesters and children >2mo
  • Citronella acceptable for brief exposure to nuisance mosquitoes but not recommended for disease carrying mosquitoes
  • No evidence supports: electronic repellents, garlic, or B vit
  • Permethrin highly effective against ticks, mosquitoes
  • Best protection: combining permethrin clothing with DEET repellent

See also: Insect Repellents

References:

  • AFP Vol 91 No 11 Jun 2015
  • AFP Vol 101 No 8 Apr 2020

Skin Type Classification

Table 21: Skin Type Classification
Skin type Skin color Characteristics
I White; very fair; red or blond hair; blue eyes; freckles Always burns, never tans
II White; fair; red or blond hair; blue, hazel, or green eyes Usually burns, tans with difficulty
III Cream white; fair with any eye or hair color; very common Sometimes mild burn, gradually tans
IV Brown; typically Mediterranean skin Rarely burns, tans with ease
V Dark brown; Middle-Eastern skin types Very rarely burns, tans very easily
VI Black Never burns, tans very easily

Terminology

There are no universally agreed upon definitions of terms or, in particular, dimensions of primary lesions. The following was offered by Watt and Jillson as an "easy-to-remember" formula.

Primary Lesions

  • Macule
    • Circumscribed area of skin, up to 1.0 cm, with a change from normal skin color, which is neither raised above nor depressed below the surrounding skin. Many use the term for lesions much greater than 1.0 cm. Term does not include purpura
  • Patch
    • A flat, circumscribed, discoloration of skin or mucous membrane greater than 1.0 cm in diameter.
  • Papule
    • Discrete solid area of skin that is elevated by palpation above the surrounding skin and less than 1 cm in diameter. Variations include accuminate, keratotic, flat-topped, follicular, umbilicated, pedunculated, necrotitic and others
  • Plaque
    • Similar to a papule but greater that 1.0 cm in diameter. Often formed by the confluence or coalescence of papules. Secondary features may include, among others, atrophy, lichenification or hyperkeratosis.
  • Nodule
    • Discrete, solid, palpable, round or oval (elipsoidal) lesion of the skin measuring up to 1.0 cm in diameter (or long axis). Applies to processes involving any or all levels of the skin, and is a general term for any mass, benign or malignant.
  • Tumor
    • A term used by some for a "nodule" greater than 1.0 cm in diameter. Applies to processes involving any or all levels of the skin, and is a general term for any mass, benign or malignant.
  • Vesicle
    • A circumscribed fluid-filled lesion less than 1.0 cm in diameter that is usually elevated above the surrounding skin. May be described as solitary, grouped, umbilicated, dyshidrotic, spongiotic, multi-locular or uni-locular.
  • Bulla
    • A circumscribed fluid-filled lesion greater than 1.0 cm in diameter that is usually elevated above the surrounding skin. May attain diameters of several cms and are described as tense, or flacid.
  • Pustule
    • Discrete elevated vesicle or bulla of skin, usually small, containing purulent exudate composed of inflammatory leukocytes (pus), with or without cellular debris. May be superficial, deep-seated, follicular, grouped, etc. and may arise secondarily from a vesicle.
  • Wheal
    • An evanescent, round or irregular, often flat-topped elevation of skin with a pale red color, arising from edema in the superficial dermis. May vary from 2-3 mm to 10 or more cm in diameter, with round or arcuate configurations. Should be distinguished from angioedema, a massive edema involving the entire dermis and subcutaneous tissues.

Secondary Lesions

  • Scar
    • A hard plaque of dense fibrotic tissue covered by a thin epidermis. A mark of injury from any sort of process (physical or pathologic).
  • Atrophy
    • Atrophy usually refers to thinning of the epidermis leaving an easily wrinkled and/or shiny surface. Atrophy may also apply to dermal and/or subcutaneous tissue, with or without changes in the epidermis.
  • Ulcer
    • Loss of skin tissue or substance from the surface downward, leaving an uncovered or denuded wound that is slow to heal.
  • Erosion
    • A superficial denudation of the skin, usually implying the loss of the epidermis.
  • Fissure
    • A vertical splitting or separation of the skin.
  • Crust
    • Dried surface fluid, often serous (inspissated serum) in nature, with or without tissue debris. For purposes of this document this includes the term "scab".
  • Excoriation
    • A scratch mark, often with denudation of the skin to form a small ulcer. Exposure of the corium by mechanical removal of the epidermis.
  • Scale
    • A thin flake of epithelium (mostly composed of corneoctyes) which is separated from the underlying intact skin proper.
  • Lichenification - a thickening of the skin surface and an increase of skin markings, usually seen with chronic coalescence of papular lesions, especially atopic eczema.
  • Vegetating
    • A lushly growing, proliferating, process, usually with elevated or exophytic features.
  • Linear / Figurate
    • Technically not secondary features, but included here solely out of convenience. These are configurations that skin lesions may assume, which aid in their diagnostic identification. Figurate includes geometrical shapes (e.g. annular, arciform, cyclic, etc.).

Reference:

  • Watt, T.L. and Jillson, O.F.: Archives of Dermatology 90:454, 1964.

Tinea Management Pitfalls

  • Do not use nystatin to treat any tinea infection because dermatophytes are resistant to nystatin. (However, nystatin is often effective for cutaneous Candida infections.)
  • Do not use oral ketoconazole to treat any tinea infection because of the U.S. Food and Drug Administration boxed warnings about hepatic toxicity and the availability of safer agents.
  • Do not use griseofulvin to treat onychomycosis because terbinafine (Lamisil) is usually a better option based on its tolerability, high cure rate, and low cost.
  • Do not use combination products such as betamethasone/clotrimazole because they can aggravate fungal infections.
  • Do not use topical clotrimazole or miconazole to treat tinea because topical butenafine (Lotrimin Ultra) and topical terbinafine (OTC 1% cream) have better effectiveness and similar cost.
  • Do not, in general, treat tinea capitis or onychomycosis without first confirming the diagnosis with a potassium hydroxide preparation, culture, or, for onychomycosis, a periodic acid–Schiff stain. However, kerion should be treated aggressively while awaiting test results, and it may be reasonable to treat a child with typical lesions of tinea capitis involving pruritus, scale, alopecia, and posterior auricular lymphadenopathy without confirmatory testing. If there is no lymphadenopathy, a confirmatory test is recommended.
  • Do not treat tinea capitis solely with topical agents, but do combine oral therapy with sporicidal shampoos, such as selenium sulfide (Selsun) or ketoconazole.
  • Do not perform potassium hydroxide preparations or cultures on asymptomatic household members of children with tinea capitis, but do consider empiric treatment with a sporicidal shampoo.

References:

  • AFP Nov 2014 Vol 90, No 10

Topical Corticosteroids

Choosing Topical Corticosteroids

Principles:

  • Ultra-high potency - use only <3wks
  • Low-to-high potency - use <3mo
  • Avoid combination steroids/antifungals (avoid adverse effects and tinea infections)
Vehicle Effect Possible uses
Ointment Emollient, higher potency Lichen
    Palms/Soles
    Xerotic
Cream Emollient Moist and weeping areas
Lotion Drying agent, spreads easily Larger areas
Gels Drying, nongreasy, nonstaining Hairy areas or face
Solution Drying agent, lower potency Hairy or intertriginous areas
Table 22: Quantity of Ointment Based on Fingertip Units
Body area Fingertip units required for one application Weight required for twice per day dosing for 30 days
Face and neck 2.5 75 g
Front of trunk 7 210 g
Back of trunk 7 210 g
One arm 3 90 g
One hand (front and back) 1 30 g
One leg 6 180 g
One foot 2 60 g

References:

  • AFP Mar 2021 Vol 103 No 6
  • Consultant Nov 2015

My Favorite topical steroids

Table 23: Economical Versions
Potency Medication Class Size
High Triamcinolone acetonide 0.5% cream III 15g
Intermediate Triamcinolone acetonide 0.1% cream IV,V 15g/30g
  Triamcinolone acetonide 0.1% ointment IV,V 15g/30g
Low Hydrocortisone 2.5% cream VII 28.4g
  Hydrocortisone 2.5% ointment VII 28.4g
  • Class 1: Clobetasol proprionate
  • Class 2: Fluicinonide/desoximetasone
  • Class 3: Betamethasone valerate/fluocinolone acetonide
  • Class 4: Trimacinolone acetonide/mometasone furoate
  • Class 5: Hydrocortisone valerate
  • Class 6: Desonide
  • Class 7: OTC hydrocortisone

Skin Conditions Responsive to Topical Corticosteroid Treatment

High-potency steroids (groups I and II)

  • Alopecia areata
  • Atopic dermatitis (resistant)
  • Bullous pemphigoid
  • Discoid lupus
  • Dyshidrotic eczema
  • Hyperkeratotic eczema
  • Labial adhesion
  • Lichen planus
  • Lichen sclerosus (skin)
  • Lichen simplex chronicus
  • Melasma
  • Nummular eczema
  • Poison ivy (severe)
  • Psoriasis Vitiligo

Medium-potency steroids (groups III, IV, and V)

  • Anal inflammation (severe)
  • Asteatotic eczema
  • Atopic dermatitis
  • Dermatitis (severe)
  • Infantile acropustulosis
  • Intertrigo (severe, short term)
  • Lichen sclerosus (vulva)
  • Nummular eczema
  • Scabies (after scabicide)
  • Seborrheic dermatitis
  • Stasis dermatitis

Low-potency steroids (groups VI and VII)

  • Dermatitis (diaper)
  • Dermatitis (eyelids)
  • Dermatitis (face)
  • Intertrigo
  • Perianal inflammation
  • Phimosis

Strength in vehicle ranked strongest to weakest:

  1. Ointment
  2. Cream
  3. Lotion
  4. Solution

Avoid face/genitalia with higher potency steroids

References:

  • AFP Mar 2021 Vol 103 No 6
  • Consultant Nov 2015

Adverse Effects of Topical Corticosteroids

  • Cutaneous effects
    • Atrophic changes
      • Easy bruising
      • Increased fragility
      • Purpura
      • Stellate pseudoscars
      • Steroid atrophy
      • Striae
      • Telangiectasias
      • Ulceration
    • Infections
      • Aggravation of cutaneous infection
      • Granuloma gluteale infantum
      • Masked infection (tinea incognito)
      • Secondary infections
    • Miscellaneous
      • Contact dermatitis
      • Delayed wound healing
      • Hyperpigmentation
      • Hypertrichosis (hirsutism)
      • Hypopigmentation
      • Perioral dermatitis
      • Photosensitization
      • Reactivation of Kaposi sarcoma
      • Rebound flare-up
      • Steroid-induced acne
      • Steroid-induced rosacea
    • Ocular changes
      • Cataracts
      • Glaucoma
      • Ocular hypertension
  • Systemic effects
    • Endocrine
      • Cushing syndrome
      • Hypothalamic-pituitary-adrenal suppression
    • Metabolic
      • Aseptic necrosis of the femoral head
      • Decreased growth rate
      • Hyperglycemia
    • Renal/electrolyte
      • Hypertension
      • Hypocalcemia
      • Peripheral edema

References:

  • AFP Mar 2021 Vol 103 No 6

Xanthoma   edit

The most common location for a xanthoma is around the inner or outer areas of the eyelids, where they tend to occur in clusters; this particular type of xanthoma is called a "xanthelasma." Xanthomas are also often seen around joints (especially on the elbows or knees), in the creases of the palms and fingers, on the feet and on the buttocks. Tendinous xanthomas are usually located within tendons that travel along the backs of the hands and arms, the tops of the feet or within the Achilles tendon on the heel. Xanthomas may be tiny little bumps, but they also can grow to be as big as three inches in diameter. Xanthomas occur when you have very high levels of fats (lipids) in your bloodstream, especially [URL="http://cholesterol.about.com/cs/cholesteroltypes/g/LDL.htm"] low-density lipoprotein cholesterol[/URL] (LDL-C). LDL levels are often elevated in people who eat a high-fat, low-fiber diet; are overweight; and do not get sufficient exercise. Other factors that may increase LDL-C include: [LIST][*]Diabetes[*]Inherited [URL="http://cholesterol.about.com/od/hyperlipidemia/g/familialhyperch.htm"] familial hypercholesterolemia[/URL] (a genetic condition which causes high cholesterol beginning in childhood)[*]Low thyroid levels (hypothyroidism)[*]Kidney problems[*]Liver problems[*]Pregnancy[*]Medications, including some antiseizure drugs, diuretics, steroids, cyclosporine and retinoid drugs[/LIST] Your doctor may diagnose a xanthoma simply by noticing its characteristic appearance. If there is any question, a sample of the growth (biopsy) can be sent to a laboratory for closer examination. If it is a xanthoma, the results of the biopsy will show that the growth is composed of lipids (fats). Xanthomas can be removed in several different ways. They can be destroyed with acetic acid, via electrical current (electrodessication), by laser treatment or by cutting them out surgically. They may, however, eventually grow back, and it is also possible that additional xanthomas will crop up in other locations. Cosmetic concerns may convince you to have a xanthoma removed, but even more important than its removal, is your attention to the high blood cholesterol that caused it in the first place. Your doctor will want to do a complete lipid panel to track your blood cholesterol and [URL="http://cholesterol.about.com/cs/aboutcholesterol/g/Triglyceride.htm"] triglyceride[/URL] levels. A lipid panel or profile is a set of blood tests that measures blood levels of triglycerides as well as the major forms of cholesterol (total cholesterol, high density lipoprotein cholesterol or [URL="http://cholesterol.about.com/cs/cholesteroltypes/g/HDL.htm"] HDL[/URL] and low density lipoprotein cholesterol or LDL). You will usually be asked to fast (consume nothing but water) for 12 to 14 hours before you have your blood drawn for a lipid panel. Generally speaking, you should aim for a total cholesterol of more than 200 mg/dL, for LDL cholesterol less than 129 mg/dL, for HDL cholesterol more than 40 mg/dL for men or 50 mg/dL for women and for triglycerides less than 150 mg/dL.

Read more: http://www.city-data.com/forum/health-wellness/600511-white-spots-above-eye-lids-anyone-6.html

Drugs/Medications/Supplements

Adverse Effects: 10 Most Commonly Filled Prescription Medications in 2019

Drug Name/Adverse Effects

  1. Levothyroxine
    • Vomiting, dysgeusia (< 1%)
  2. Lisinopril
    • Dysgeusia (≥ 1%), Stevens-Johnson syndrome (≥ 1%), toxic epidermal necrolysis (≥ 1%), xerostomia (≥ 1%), angioedema (< 1%)
  3. Atorvastatin (Lipitor)
    • Anaphylaxis (< 1%), angioedema (< 1%), dysgeusia (< 1%), erythema multiforme (< 1%), hypoesthesia/paresthesia (< 1%), Stevens-Johnson syndrome (< 1%), toxic epidermal necrolysis (< 1%), vomiting (< 1%)
  4. Metformin
    • Infection (21%), nausea and vomiting (7% to 26%), taste disorder (1% to 10%)
  5. Amlodipine (Norvasc)
    • Angioedema (< 1%), dysphagia (< 1%), erythema multiforme (< 1%), gingival enlargement (< 1%), hypersensitivity reaction (< 1%), hypoesthesia/paresthesia (< 1%), increased thirst (< 1%), vomiting (< 1%), xerostomia (< 1%)
  6. Metoprolol
    • Xerostomia (1%), vomiting (frequency undefined), paresthesia (< 1%), taste disorder (< 1%)
  7. Omeprazole (Prilosec)
    • Vomiting (3%), acid regurgitation (2%), allergic reactions/anaphylaxis/hypersensitivity reaction (< 1%), angioedema (< 1%), dysgeusia (< 1%), erythema multiforme (< 1%), Stevens-Johnson syndrome (< 1%), tongue mucosal atrophy (< 1%), toxic epidermal necrolysis (< 1%), xerostomia (< 1%)
  8. Simvastatin (Zocor)
    • Anaphylaxis (< 1%), angioedema (< 1%), dry mucous membranes (< 1%), dysgeusia (< 1%), erythema multiforme (< 1%), hypersensitivity reaction (< 1%), paresthesia (< 1%), Stevens-Johnson syndrome (< 1%), toxic epidermal necrolysis (< 1%), vomiting (< 1%)
  9. Losartan (Cozaar)
    • Paresthesia (< 2%), vomiting (< 2%), anaphylaxis (< 1%), angioedema (< 1%), dysgeusia (< 1%), lip edema (< 1%), tongue edema (< 1%)
  10. Albuterol
    • Application site reaction (6%), oropharyngeal pain (≤ 5%), unpleasant taste at inhalation site (4%), vomiting (3% to 7%), hypersensitivity reaction (3% to 6%), glossitis (< 3%), infection (< 3%), oropharyngeal edema (< 3%), xerostomia (< 3%), anaphylaxis (< 1%), angioedema (< 1%), dysgeusia (< 1%), oropharyngeal irritation (< 1%), tongue ulcer (< 1%)

References:

  • AFP Nov 2020 Vol 102 No 10

Adverse Effects: Opioids

[2023-12-14 Thu 12:04]

Opioid adverse effects:

  • constipation and intestinal blockages
  • sleep-disordered breathing
  • fractures
  • hypothalamic-pituitary-adrenal dysregulation
    • decrease of gonadotropin-releasing hormone
      • males: as hypogonadism, also known as opiate-induced androgen deficiency, sexual dysfunction, infertility, fatigue, and decreased levels of testosterone
      • Women: Decreased circulating levels of estrogen, low follicle-stimulating hormone, and increased prolactin can lead to osteoporosis, oligomenorrhea, and galactorrhea
    • these side effects are reversible with cessation of treatment or lower dosing
  • overdose
    • respiratory depression
    • bradycardia
    • hypotension
  • addiction
  • Dizziness and sedation
  • Depression
    • higher levels of comorbid clinical depression of up to 38%
  • Mortality
    • long-term opioid treatment is associated with an 87% increase in all-cause mortality

Overdose:

  • Among persons on higher opioid doses, the risk of opioid overdose was estimated to be 1.8% per year of opioid use.
  • Additionally, 12% of identified overdoses were fatal, suggesting an annual fatal overdose risk of about 2 per 1,000 per year among patients on higher-dose opioid regimens.
    • These estimates are consistent with Centers for Disease Control and Prevention mortality surveillance data on deaths from drug overdose, which now roughly equal motor vehicle accidents as a leading cause of death among 35–54 year olds.
Table 24: Medical Risks of Long-Term Opioid Use: A Guide For Patients
Medical Risk How Common? Description and Information
Respiratory depression    
Opioid overdose < 1% per year Caused by severely slowed breathing, which you may not notice
    Severe cases are treated in the hospital
    Can cause death
Breathing problems during sleep 25% Can cause or worsen sleep apnea
    You may not notice breathing problems
Falls and fractures    
Falls causing hip and pelvis fractures 1%–2% per year
Gastrointestinal    
Constipation 30%–40% It helps to use stool softeners or medicines that stimulate bowel movements
Serious intestinal blockage < 1% per year Caused by severe constipation
    Severe cases are treated in the hospital
Hormonal effects    
Hypogonadism, impotence, infertility, osteoporosis 25%–75% Hypogonadism = lowered sex hormones, which can worsen sexual function
    Osteoporosis can make you more likely to fracture or break a bone
Cognitive and neurophysiologic effects    
Sedation 15% Can cause difficulty driving and thinking clearly
Disruption of sleep 25%  
Hyperalgesia Not known Hyperalgesia = being more sensitive to pain
Psychosocial    
Depression, anxiety, deactivation, apathy 30%–40% Can cause loss of interest in usual activities, which can lead to depression; depression can worsen pain, just as pain can worsen depression
Addiction, misuse, and diversion 5%–30% Misuse or overdose can occur if others, including children and teens, gain access to the medicine; your pharmacist can tell you how to dispose of unused medicines safely
Other    
Dry mouth that may cause tooth decay 25% Brush your teeth and rinse your mouth often
    Chew sugarless gum and drink water or sugar-free, noncarbonated fluids
Myoclonus Not known Myoclonus = muscle twitching

Common side effects of opioid administration include:

  • sedation
  • dizziness
  • nausea
  • vomiting
  • constipation
  • physical dependence
  • tolerance
  • respiratory depression
  • Physical dependence and addiction

Less common side effects may include:

  • delayed gastric emptying
  • hyperalgesia
  • immunologic and hormonal dysfunction
  • muscle rigidity
  • myoclonus

The most common side effects of opioid usage are:

  • constipation (which has a very high incidence)
  • nausea

Reference:

  1. Baldini A, Von Korff M, Lin EH. A Review of Potential Adverse Effects of Long-Term Opioid Therapy: A Practitioner's Guide. Prim Care Companion CNS Disord. 2012;14(3):PCC.11m01326. doi: 10.4088/PCC.11m01326. Epub 2012 Jun 14. PMID: 23106029; PMCID: PMC3466038.
  2. Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N, Glaser SE, Vallejo R. Opioid complications and side effects. Pain Physician. 2008 Mar;11(2 Suppl):S105-20. PMID: 18443635.

Alcohol Use

The major indirect biomarkers are

  • the liver enzymes aspartate and alanine aminotransferase (AST and ALT)
  • gamma-glutamyl transferase (GGT)
  • mean corpuscular volume (MCV) of red blood cells
  • carbohydrate-deficient transferrin (CDT).
Table 25: Indirect Alcohol Biomarkers
Indirect Biomarkers Sen/Sp Time to return to normal Notes
GGT 41-73 / 63-85 2-6 weeks  
AST 47-68 / 80-95 1 wk  
SLT 32-50 / 87-92 1wk  
MCV 40-50 / 80-90 Unknown - T1/2 40d Elevated indicate excessive drinking
CDT 63-84 / 92-98 2-4 wk Most accurate in middle aged white men, better sensitivity in men, combine with GGT and CDT to increase sensitivity in women
Alcohol 100 / 100 6-12 h after last drink  

Reference:

  • JFP Dec 2021 Vol 70 No 10

Antidepressants and sexual function

  • Patients treated with selective serotonin reuptake inhibitors (SSRIs) and the serotonin/norepinephrine reuptake inhibitor (SNRI) venlafaxine have significantly higher rates of overall sexual dysfunction—includingdesire, arousal, and orgasm—than patients treated with placebo (strength of recommendation [SOR]: B, randomized controlled trials [RCTs] with heterogeneous results).
  • Patients treated with bupropion, a norepinephrine-dopamine reuptake inhibitor (NDRI), have rates of overall sexual dysfunction comparable to placebo (SOR: B, RCTs with heterogeneous results).
  • Total rate of sexual dysfunction (SD) associated with selective serotonin reuptake inhibitors (SSRIs) was significantly higher than the placebo rate of 14.2%.
  • The SSRIs citalopram, fluoxetine, paroxetine, and sertraline as well as the SNRI venlafaxine, had significantly greater rates (70%-80%) of reported total sexual dysfunction, including desire, arousal, and orgasm, than placebo.
  • Paroxetine, citalopram, and venlafaxine, when compared with other antidepressants (fluoxetine, fluvoxamine, nefazodone, sertraline), generally were associated with more reports of SD, specifically complaints of erectile dysfunction in men and decreased vaginal lubrication in women.
  • The number needed to treat one additional person with general sexual functioning satisfaction was 6 (95% CI, 4-9) with bupropion.

References:

  • J Fam Pract. 2013 November;62(11):660-661.

Auvelity Notes

  • Star-D trial
  • auvelity

Auvelity

ADVERSE REACTIONS

  • Most common adverse reactions (≥5% and twice the rate of placebo): dizziness (16%), headache (8%), diarrhea (7%), somnolence (7%), dry mouth (6%), sexual dysfunction (6%), and hyperhidrosis (5%).

USE IN SPECIFIC POPULATIONS

  • Lactation: Because of the potential for neurotoxicity, advise patients that breast-feeding is not recommended during treatment with Auvelity and for 5 days following final dose.
  • Renal Impairment: Dosage adjustment is recommended in patients with moderate renal impairment (eGFR 30 to 59 mL/minute/1.73 m2). Auvelity is not recommended in patients with severe renal impairment (eGFR 15 to 29 mL/minute/1.73 m2).
  • Hepatic Impairment: Auvelity is not recommended in patients with severe hepatic impairment.

HOW TO TAKE

  • Auvelity is available by prescription only.
  • Take Auvelity exactly as instructed by your HCP.
  • Take Auvelity 1 time a day for 3 days, then increase your dose to 2 times a day (taken at least 8 hours apart). Do not take more than 2 Auvelity tablets in 24 hours.
  • If you miss a dose, do not take an extra dose. Wait and take your next dose at the regular time. Do not take more than 1 dose of Auvelity at a time.
  • Do not change your dose or stop taking Auvelity without talking to your HCP.
  • Swallow Auvelity tablets whole. Do not crush, chew, or divide the tablets.
  • Do not give Auvelity to other people.
  • If you take too much Auvelity call your HCP or seek medical advice promptly.

Contraindications:

  • have or had a seizure disorder.
  • have or had an eating disorder like anorexia or bulimia.
  • have recently and suddenly stopped drinking alcohol or use medicines called benzodiazepines, barbiturates, or anti-seizure medicines, and you have recently suddenly stopped taking them.
  • are taking a monoamine oxidase inhibitor (MAOI), have stopped taking an MAOI in the last 14 days, or are being treated with the antibiotic linezolid or intravenous methylene blue. Ask your HCP or pharmacist if you are unsure whether you take an MAOI. Do not start taking an MAOI until you have stopped taking Auvelity for at least 14 days.
  • are allergic to dextromethorphan, bupropion, or any other ingredients in Auvelity.

Interactions:

  • other medicines containing bupropion or dextromethorphan
  • medicines to treat depression, anxiety, psychotic or thought disorders, including selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants
  • theophylline
  • corticosteroids
  • oral diabetes medicines or use insulin to control your blood sugar
  • medicines to control appetite (anorectic)
  • nicotine medicines to help you stop smoking
  • street (illicit) drugs
  • benzodiazepines, sedative-hypnotic (sleep medicines), or opiates

Efficacy and Safety of AXS-05 (Dextromethorphan-Bupropion) in Patients With Major Depressive Disorder: A Phase 3 Randomized Clinical Trial (GEMINI)

Objective:

  • Altered glutamatergic neurotransmission has been implicated in the pathogenesis of depression. This trial evaluated the efficacy and safety of AXS-05 (dextromethorphan-bupropion), an oral N-methyl-D-aspartate (NMDA) receptor antagonist and σ1 receptor agonist, in the treatment of major depressive disorder (MDD).

Methods:

  • This double-blind, phase 3 trial, was conducted between June 2019 and December 2019.
  • Patients with a DSM-5 diagnosis of MDD were randomized in a 1:1 ratio to receive dextromethorphan-bupropion (45 mg-105 mg tablet) or placebo, orally (once daily for days 1-3, twice daily thereafter) for 6 weeks.
  • The primary endpoint was the change from baseline to week 6 in the Montgomery-Asberg Depression Rating Scale (MADRS) total score.
    • Other efficacy endpoints and variables included MADRS changes from baseline at week 1 and 2, clinical remission (MADRS score ≤ 10), clinical response (≥ 50% reduction in MADRS score from baseline), clinician- and patient-rated global assessments, Quick Inventory of Depressive Symptomatology-Self-Rated, Sheehan Disability Scale, and quality of life measures.

Results:

  • A total of 327 patients were randomized: 163 patients to dextromethorphan-bupropion and 164 patients to placebo.
  • Mean baseline MADRS total scores were 33.6 and 33.2 in the dextromethorphan-bupropion and placebo groups, respectively. The least-squares mean change from baseline to week 6 in MADRS total score was -15.9 points in the dextromethorphan-bupropion group and -12.0 points in the placebo group (least-squares mean difference, -3.87; 95% confidence interval [CI], -1.39 to -6.36; P = .002).
  • Dextromethorphan-bupropion was superior to placebo for MADRS improvement at all time points including week 1 (P = .007) and week 2 (P < .001).
  • Remission was achieved by 39.5% of patients with dextromethorphan-bupropion versus 17.3% with placebo (treatment difference, 22.2; 95% CI, 11.7 to 32.7; P < .001), and clinical response by 54.0% versus 34.0%, respectively (treatment difference, 20.0%; 95% CI, 8.4%, 31.6%; P < .001), at week 6.
  • Results for most secondary endpoints were significantly better with dextromethorphan-bupropion than with placebo at almost all time points (eg, CGI-S least-squares mean difference at week 6, -0.48; 95% CI, -0.48 to -0.79; P = .002). The most common adverse events in the dextromethorphan-bupropion group were dizziness, nausea, headache, somnolence, and dry mouth. Dextromethorphan-bupropion was not associated with psychotomimetic effects, weight gain, or increased sexual dysfunction.

Conclusions:

  • In this phase 3 trial in patients with MDD, treatment with dextromethorphan-bupropion (AXS-05) resulted in significant improvements in depressive symptoms compared to placebo starting 1 week after treatment initiation and was generally well tolerated.

Reference:

Benzodiazepines   edit

[2023-12-14 Thu 12:12]

FDA-approved Benzodiazepines and Dosage Recommendations:

  • Alprazolam: Alprazolam is indicated for anxiety disorders and panic disorders, including agoraphobia.
    • For generalized anxiety disorder, initiate treatment with a dose of 0.25 mg to 0.5 mg three times daily. The dose of alprazolam may be increased at intervals of 3 to 4 days to a daily dose of 4 mg.
    • For panic disorders, a 1-4 mg daily dose is used. Use the minimal effective clinical dose due to the potential for dependence.
  • Chlordiazepoxide: Chlordiazepoxide is primarily indicated for the management of alcohol withdrawal syndrome.
    • For alcohol withdrawal syndrome, the suggested initial dose is 50 to 100 mg, followed by repeated doses of up to 300 mg per day as needed. Adjust the dose according to CIWA-Ar protocol.
  • Clobazam: Clobazam is indicated for seizures associated with Lennox-Gastaut syndrome.
    • For Lennox-Gastaut syndrome, an adjunct to antiepileptic drugs, the initial dose is 10 mg for patients weighing more than 30 kg. The dose is increased to 20 mg after one week. The usual maintenance dose after two weeks is 40 mg. In patients with a weight <30 kg, the dose should be reduced to half the recommended dose mentioned above. Study findings indicate that patients with seizure improvement on starting dosages of 10 to 20 mg/day of clobazam may have better seizure control even if the dosage is increased beyond the maximum recommended dosage of 40 mg/day.
  • Clonazepam: Clonazepam is indicated for treating panic disorder and agoraphobia.[3] It is also indicated for the treatment of myoclonic seizures and absence seizures.
    • The initial dose for adults with panic disorder is 0.5 mg daily. The maintenance dose for most patients of 1 mg per day.
    • 0.5 mg is given thrice daily for seizure disorders, and the maximum recommended daily dose is 20 mg.
  • Clorazepate: Clorzapte is used for adjunct treatment of short-term management of anxiety disorders. It is also indicated for focal (partial) onset seizures.
    • The initial dose in patients with focal (partial) onset seizures in patients over 12 years is 7.5 mg three times a day. The maximum recommended dose is 90 mg/day.
  • Diazepam: Diazepam is used for alcohol withdrawal management, Rectal diazepam is also indicated for treating febrile seizures.
    • ASAM 2020 guidelines recommend front-loading for patients experiencing severe alcohol withdrawal (e.g., CIWA-Ar ≥ 19). A withdrawal symptom severity scale guides a front-loading regimen (e.g., 10 mg diazepam orally every hour if CIWA-Ar score ≥10) or according to a fixed schedule (e.g., 20 mg diazepam orally every 2 hours for three doses).[12]
    • The recommended dose of diazepam (rectal) for febrile seizures is 0.5 mg/kg.[8][21]
  • Estazolam: According to the American Academy of Sleep Medicine, estazolam is indicated for the treatment of insomnia.
    • According to AASM, the dose of estazolam for sleep onset and sleep maintenance insomnia is 1 to 2 mg at bedtime.
  • Flurazepam: Flurazepam is indicated for the treatment of insomnia.
    • Flurazepam is indicated for the treatment of insomnia. The recommended dose of flurazepam is 15 mg for women and 30 mg for men.
  • Lorazepam: Lorazepam is used for anxiety disorders. According to American Epilepsy Society guidelines, parenteral lorazepam is one of the first-line treatments for convulsive status epilepticus.
    • According to AES guidelines, IV lorazepam(0.1 mg/kg) is administered as an initial dose for convulsive status epilepticus; the maximum recommended dose is 4 mg. The dose may be repeated at 3 to 5 minutes.
  • Midazolam: Midazolam is indicated for convulsive status epilepticus and procedural sedation. Midazolam is used for sedation in mechanically ventilated patients in the MICU/SICU.
    • Midazolam is administered 10 mg IM for convulsive status epilepticus as a single dose. Midazolam is preferred for patients without IV access. Intranasal midazolam (0.2 mg/kg, maximum dose, 10 mg) can be used in prehospital settings. (AES guidelines). For procedural sedation in patients< 60 years of age, 0.5 to 2.5 mg IV should be administered slowly over at least 2 minutes. Clinicians should fully evaluate the sedative effect before administering another dose. In MICU/SICU, midazolam is used as an alternative agent for sedation in mechanically ventilated patients. An intermittent dosing strategy is preferred to avoid drug accumulation. It is administered with a RASS goal of 0 to -2.
  • Oxazepam: Oxazepam is indicated for anxiety disorders, and according to the ASAM (American Society of Addiction Medicine) guidelines, oxazepam is indicated for alcohol withdrawal syndrome.
    • For alcohol withdrawal syndrome, oxazepam is administered with a symptom-triggered dosing approach. For CIWA-Ar scores between 8 to 15, 15 mg oxazepam is administered and 30 mg oxazepam is given for CIWA-Ar >15).(ASAM 2020 guidelines).
  • Quazepam: According to the American College of Physicians, quazepam is indicated mainly for treating chronic insomnia in adults.
    • Quazepam is suggested as an alternative drug for sleep onset and sleep maintenance insomnia. The recommended dose is 7.5 mg once daily at bedtime. The dose of quazepam can be increased to 15 mg, but the drug has a long half-life; hence there is a concern regarding accumulation and daytime impairment.
  • Temazepam: American Academy of Sleep Medicine (AASM) clinical practice guideline suggests temazepam for sleep onset and sleep maintenance insomnia.
    • AASM Clinical Practice Guideline recommends temazepam for sleep onset and sleep maintenance insomnia. The recommended dose is 7.5 to 15 mg once daily at bedtime.
    • Temazepam improves total sleep time, decreases sleep latency, and improves sleep quality. According to the ACP (American College of Physicians) guidelines, all patients with chronic insomnia should receive cognitive behavioral therapy as the initial treatment intervention.
  • Triazolam: Triazolam is indicated primarily for sleep-onset insomnia.
    • Triazolam is indicated primarily for sleep-onset insomnia. The recommended dose is 0.125 to 0.25 mg once daily at bedtime. Limit the use to 4 to 8 weeks.
  • Remimazolam: Remimazolam was approved by the FDA in 2020 and is indicated for short(<30 mins) procedural sedation in adults
    • Remimazolam was approved by the FDA in 2020 and is indicated for short (<30 mins) procedural sedation in adults. For procedural sedation in adult patients, administer 5 mg IV remimazolam over 1 minute. To maintain procedural sedation, administer 2.5 mg IV (as needed) over 15 seconds. For induction, in ASA( American Society of Anesthesiologists) class III and IV patients, administer 2.5 mg to 5 mg IV over 1 minute based on the clinical condition. To maintain procedural sedation in ASA class III and IV patients, administer 1.25 mg to 2.5 mg intravenously as needed over 15 seconds. Wait for at least 2 minutes before administration of an additional dose.

Common adverse effects of benzodiazepine administration include, but are not limited to:

  • Respiratory depression
  • Respiratory arrest
  • Drowsiness
  • Confusion
  • Headache
  • Syncope
  • Nausea/vomiting
  • Diarrhea
  • Tremor

Concomitant use of benzodiazepines with opioids can lead to sedation, severe respiratory depression, coma, and death.

Reference:

Bupropion

  • The medication is FDA-approved for adult depression, seasonal affective disorder, and smoking cessation.
  • Off-label, non-FDA-approved uses include:
    • Anti-depressant-induced sexual dysfunction
    • Attention-deficit/hyperactivity disorder (ADHD)
    • Depression associated with bipolar disorder
    • Obesity
  • In the pediatric population, bupropion is used off-label for ADHD

Reference:

Caffeine

Beverage Serving Size (oz) Caffeine (mg)
Decaffeinated coffee 8 2
Starbucks Grande Coffee 16 330
Starbucks Caffee Latte 16 150
Plain, brewed coffee 8 95
Espresso 1 64
Decaffeinated tea 8 2
Black tea, brewed 8 47
Snapple iced tea 16 18
Diet Mountain Dew 12 55
Diet Coke 12 46
Diet Pepsi 12 37
Sam's Diet Cola 12 13
SoBe Adrenaline Rush 16 152
Red Bull 8.3 76

Reference:

  • JFP Vol 58 No 6 Jun 2009

CAM with evidence

  • Fish oil - hypertriglyceridemia - SOR B
    • GI complaints; may interact with anticoagulant meds; may increase risk of prostate ca
  • Glucosamine - osteoarthritis - SOR B
    • Mild GI effects, drowsiness, skin reactions, HA; use with caution in shellfish allergy; may increase warfarin effects
  • Probiotics - Preventing antibiotic associated diarrhea - SOR B
    • Flatulence, vomiting, rash, CP, increased phlegm; contraindicated in immunosuppressed or indwelling medical device
  • Soy - Hyperlipidemia - SOR C
    • GI effects; may increase risk of endometrial hyperplasia; use with caution in pts with thyroid dysfunction or hormone sensitive ca
  • St John's Wort - Depression - SOR B
    • Photosensitivity, GI effects, fatigue, increased risk cataracts. Not preg/lact; may interact with antidepressants, OCPs, cyclosporine, digoxin, indinavir, phenytoin, phenobarbital, warfarin, and more
  • Guided imagery - mood, pain, anxiety - SOR A
    • AE: None
  • Acupuncture - back, neck, shoulder pain; Osteoarthritis, HA - SOR B
    • Infection, skin irritation, hematoma, pneumothorax
  • Yoga - low back pain - SOR C
    • AE: None

References:

  • JFP Vol 63, No 10 Oct 2014

Cannabis/Marijuana

Cannabis and Adolescents

Adolescents with a history of cannabis use have at least a 50% increase in the odds of developing suicidality in adulthood. (SOR: B, large meta-analysis of cohort studies consistent with an additional cohort and cross-sectional twin study.)

  • 50% increase in the odds of suicidal ideation (three studies; n = 8,479; OR = 1.5; 95% CI, 1.1 to 2.0)
  • More than a 3x increase in the odds of a suicide attempt (three studies; n = 13,687; OR = 3.4; 95% CI, 1.5 to 7.8)

Reference:

  • Am Fam Physician. 2024;109(4):369-370

Cannabis and Male fertility   edit

Current research suggests that cannabis may negatively impact male fertility. Further studies are needed to validate that robust findings in animal models will carry over into human experience. Clinicians should be aware of these potential effects when prescribing medical marijuana therapies to men of reproductive age, and they should consider the degree of cannabis use as a possible component of a complete male infertility workup.

Reference:

  • Payne KS, Mazur DJ, Hotaling JM, Pastuszak AW. Cannabis and Male Fertility: A Systematic Review. J Urol. 2019 Oct;202(4):674-681. doi: 10.1097/JU.0000000000000248. Epub 2019 Sep 6. PMID: 30916627; PMCID: PMC7385722.

Prenatal cannabis exposure associated with mental disorders in children that persist into early adolescence

Prenatal cannabis exposure following the middle of the first trimester—generally after five to six weeks of fetal development—is associated with attention, social, and behavioral problems that persist as the affected children progress into early adolescence (11 and 12 years of age)

Reference:

Chest CT Findings in Marijuana Smokers

Retrospective case-control study

  • evaluated results of chest CT examinations (from October 2005 to July 2020) in:
    • marijuana smokers
    • nonsmoker control patients
    • tobacco-only smokers
  • compared rates of:
    • emphysema
    • airway changes
    • gynecomastia
    • coronary artery calcification

Results

  • Population:
    • A total of 56 marijuana smokers (34 male; mean age, 49 years ± 14 [SD])
    • 57 nonsmoker control patients (32 male; mean age, 49 years ± 14)
    • 33 tobacco-only smokers (18 male; mean age, 60 years ± 6) were evaluated
  • Higher rates of emphysema were seen among marijuana smokers (42 of 56 [0%]) than nonsmokers (three of 57 [0%]) (P < .001) but not tobacco-only smokers (22 of 33 [0%]) (P = .40).
  • Rates of bronchial thickening, bronchiectasis, and mucoid impaction were higher among marijuana smokers compared with the other groups (P < .001 to P = .04).
  • Gynecomastia was more common in marijuana smokers (13 of 34 [0%]) than in control patients (five of 32 [0%]) (P = .039) and tobacco-only smokers (two of 18 [0%]) (P = .040).
  • There was no difference in rate of coronary artery calcification between age-matched marijuana smokers (21 of 30 [0%]) and tobacco-only smokers (28 of 33 [0%]) (P = .16).

Conclusion:

  • Airway inflammation and emphysema were more common in marijuana smokers than in nonsmokers and tobacco-only smokers, although variable interobserver agreement and concomitant cigarette smoking among the marijuana-smoking cohort limits our ability to draw strong conclusions.

Reference:

Marijuana and Cardiovascular Disease

  • Compared with non-users, MJ use associated with
    • 88% higher odds of myocardial infarction or CAD in adults 18-74
    • 81% higher odds of stroke
  • Even higher odds in males <55 yo and females <65 yo
  • Frequent MJ smoking had
    • 2.1 times higher odds of MI or CAD
    • 1.8 times highter odds of stroke
  • No association was observed between MJ use in any form other than smoking and cardiovascular disease

References:

  • S Shah. Association of Marijuana Use and Cardiovascular Disease: A Behavioral Risk Factor Surveillance System Data Analysis of 133,706 US Adults. AJM Vol 134 No 5 May 2021

Contraception

Use the Quick Start method:

  • Start same day as prescription regardless of menstrual cycle
  • Use back-up protection for the first 7 days
  • Prescribe a year at a time

Patient Resources:

  • Bedsider.org
  • StayTeen.org

Antiepileptic drugs to avoid with OCPs:

  • Carbamazepine
  • Lamotrigine
  • Oxcarbazepine
  • Phenobarbital
  • Phenytoin
  • Primodone
  • Topiramate

Antiepileptic drugs to consider instead with OCPs:

  • Ethosuximide
  • Gabapentin
  • Levetiracetam
  • Pregabalin
  • Tiagabine
  • Valproate
  • Vigabatrin
  • Zonisamide

References:

  • JFP Vol 66 No 11 Nov 2017

OCP Adverse Effect Management

  • Nausea
    • Take pill at bedtime, or at a meal
    • Use Low Estrogen pill (e.g. Loestrin 1/20)
  • Fluid Retention
    • Change to OCP with the following characteristics
      • Low Estrogenic Activity (or low Estrogen dose)
    • Examples
      • Loestrin 1/20
      • Loestrin 1.5/30
  • Appetite too active or weight gain
    • Change to OCP with the following characteristics
      • Low Estrogenic Activity (or low Estrogen dose)
      • Low Androgenic Activity
    • Examples
      • Ovcon 35
      • Ortho Novum 1/35
  • Hypertension
    • Discontinue Oral Contraceptive
    • Consider Mini-Pill (Progestin only)
  • Major Depression
    • See Major Depression Management
    • Change to OCP with the following characteristics
      • Low Progestin Activity
    • Adjunctive Measures
      • Pyridoxine 20 mg bid
  • Migraine Headache
    • Do not use Oral Contraceptives in women who have Migraine with Aura (risk of stroke)
      • Consider Progestin-Only Pill (Mini-Pill) or Intrauterine Device as alternative
    • Characteristics
      • More common during the first cycle of Oral Contraceptives
      • More common in women over age 35 years
    • General
      • Change to OCP with low Estrogenic Activity (or low Estrogen dose)
      • Examples
        • Loestrin 1/20
        • Progesterone Only OCP
        • Avoid triphasic Oral Contraceptives
        • Continuous Cycle or Seasonal Contraception (84 days OCP with 5 days withdraw)
      • Indicated for Menstrual Migraine
    • Headache during the Placebo week
      • Take estradiol 10 mcg orally for 5 of the 7 Placebo days
      • Benefit in age over 40 years (unclear if benefit extends to younger women)
  • Miscellaneous adverse effects
    • Decreased Libido
      • Increase Androgenic Activity
    • Moodiness
      • Lower Estrogenic Activity
    • Dry Eyes
      • Increase Progestin Activity (Progestin dominant pill)

Reference:

Controlled medications

Prescription:

  • A prescription must be written in ink or indelible pencil or typewritten and must be manually signed by the practitioner. An individual may be designated by the practitioner to prepare the prescriptions for his/her signature. The practitioner is responsible for making sure that the prescription conforms in all essential respects to the law and regulation.
  • Prescriptions for schedule II controlled substances must be written and be signed by the practitioner. In emergency situations, a prescription for a schedule II controlled substance may be telephoned to the pharmacy and the prescriber must follow up with a written prescription being sent to the pharmacy within seven days. Prescriptions for schedules III through V controlled substances may by written, oral or transmitted by fax.

Refills:

  • Prescriptions for schedule II controlled substances cannot be refilled. A new prescription must be issued. Prescriptions for schedules III and IV controlled substances may be refilled up to five times in six months. Prescriptions for schedule V controlled substances may be refilled as authorized by the practitioner.

Opioid Use Disorder and Clinics

Start Your Recovery

Here are locations I found that have been described as low cost:

I suggest calling each of them and asking for help.

Opioid: CDC Recommendations

Maximize use of non opioid therapy

  • Treat any mood disorder
  • PT, exercise, water aerobics
  • CBT
  • Intraarticular glucocorticoid or trigger point injections
  • Epidural steroid injections for chronic radicular low back pain
  • TENS units with poor data
  • Acetaminophen vs NSAIDS
    • For chronic LBP - both are equally effective
    • For non-LBP, NSAIDS are slightly more effective for OA
    • NSAIDs have significantly more side effects
    • COX2 have less side effects but still CV risk like NSAIDS
  • Neuropathic pain
    • Gabapentin, pregabalin, TCAs
    • Duloxetine and venlafaxine
    • Nortiptyline at low doses (10mg/d)
  • Other
    • Topical 5% lidocaine patch or gel
    • Capsaicin cream

Opioid: FL HB21

Main points:

  1. 3 Day limit on schedule II opioids for "acute pain" with a 7 day exemption)
    • For 7 days:
      1. have to believe it is medically necessary to treat the pain
      2. Indicate "Acute Pain Exemption" on the prescription
      3. Adequately document in the records the acute medical condition and lack of alternative treatment options that justify the deviation from 3 day supply limit
    • Acute Pain Exemption Template
      • "Patient is having significant pain caused by _ which will last more thatn three days. Trial of _ has not helped. I believe that it is medically necessary to treat this patient's pain because it is affecting their ability to _."
  2. Includes hydrocodone and codeine
  3. Opioid antagonist requirements
  4. Consult PDMP before prescribing MOST controlled substances every time

Resources:

Corticosteroids

See also:

  • Topical Corticosteroids
  • Systemic corticosteroids are recommended for patients within three days of the onset of symptoms of Bell palsy.
    • LOE: A
  • Systemic corticosteroids appear to be a safe and effective alternative to nonsteroidal anti-inflammatory drugs in patients with acute gout.
    • LOE: B
  • Do not prescribe systemic corticosteroids for patients with acute bronchitisor acute sinusitis.
    • LOE: B
  • Do not prescribe systemic corticosteroids for patients with allergic rhinitis.
    • LOE: C
  • There is insufficient evidence to support routine use of systemic corticosteroids for patients with lumbar radiculopathy.
    • LOE: B
  • Do not prescribe systemic corticosteroids for patients with carpal tunnel syndrome.
    • LOE: B
  • There is insufficient evidence to support routine use of systemic corticosteroids for patients with acute pharyngitis.
    • LOE: B
  • There is insufficient evidence to support routine adjunct use of systemic corticosteroids for patients with herpes zoster.
    • LOE: B

Prescribing Helps:

  • Medrol Dosepak (Methylprednisolone Dose Pack) Dosing (according to the packaging) – 4-mg tablets
    • 6-day tapering course: 6, 5, 4, 3, 2, 1 pill(s) for a total of 21 tablets
      • Day 1: (2) tablets before breakfast, (1) after lunch, (1) after dinner, (2) at bedtime [24-mg]
      • Day 2: (1) before breakfast, (1) after lunch, (1) after dinner, (2) at bedtime [20-mg]
      • Day 3: (1) before breakfast, (1) after lunch, (1) after dinner, (1) at bedtime [16-mg]
      • Day 4: (1) before breakfast, (1) after lunch, (1) at bedtime [12-mg]
      • Day 5: (1) before breakfast, (1) at bedtime [8-mg]
      • Day 6: (1) before breakfast [4-mg]
    • Directions: Day 1: (2) tablets before breakfast, (1) after lunch, (1) after dinner, (2) at bedtime; Day 2: (1) before breakfast, (1) after lunch, (1) after dinner, (2) at bedtime; Day 3: (1) before breakfast, (1) after lunch, (1) after dinner, (1) at bedtime; Day 4: (1) before breakfast, (1) after lunch, (1) at bedtime; Day 5: (1) before breakfast, (1) at bedtime; Day 6: (1) before breakfast
    • Note:
      • If patient’s get the dose pack later in the day, it is okay to take all six (6) tablets at once or in divided doses so they are all consumed the first day.
      • Then have the patient start on the package instructions for day 2.

References:

Study: Association Between Oral Corticosteroid Bursts and Severe Adverse Events : A Nationwide Population-Based Cohort Study (Steroid burst dangers)

[2023-12-14 Thu 12:28]

For people taking oral steroids over a median 3 days, the risk of such events was elevated in the 5-30 days after steroid therapy initiation compared with the reference period (5-90 days before initiation):

  • GI bleeding: 27.1 per 1,000 person-years (incidence rate ratio 1.80, 95% CI 1.75-1.84)
  • Sepsis: 1.5 per 1,000 person-years (IRR 1.99, 95% CI 1.70-2.32)
  • Heart failure: 1.3 per 1,000 person-years (IRR 2.37, 95% CI 2.13-2.63)

Background:

  • Long-term use of oral corticosteroids has known adverse effects, but the risk from brief oral steroid bursts (≤14 days) is largely unknown.

Objective:

  • To examine the associations between steroid bursts and severe adverse events, specifically gastrointestinal (GI) bleeding, sepsis, and heart failure.

Design:

  • Self-controlled case series.

Setting:

  • Entire National Health Insurance Research Database of medical claims records in Taiwan.

Participants:

  • Adults aged 20 to 64 years with continuous enrollment in the National Health Insurance program from 1 January 2013 to 31 December 2015.

Measurements:

  • Incidence rates of severe adverse events in steroid burst users and non-steroid users, as well as incidence rate ratios (IRRs) for severe adverse events within 5 to 30 and 31 to 90 days after initiation of steroid therapy.

Results:

  • Of 15,859,129 adult participants, 2,623,327 who received a single steroid burst were included.
  • The most common indications were skin disorders and respiratory tract infections.
  • The incidence rates per 1000 person-years in steroid bursts were
    • 27.1 (95% CI, 26.7 to 27.5) for GI bleeding
    • 1.5 (CI, 1.4 to 1.6) for sepsis
    • 1.3 (CI, 1.2 to 1.4) for heart failure
  • Rates of GI bleeding (IRR, 1.80 [CI, 1.75 to 1.84]), sepsis (IRR, 1.99 [CI, 1.70 to 2.32]), and heart failure (IRR, 2.37 [CI, 2.13 to 2.63]) *significantly increased within 5 to 30 days after steroid therapy initiation and attenuated during the subsequent 31 to 90 days.

Limitation:

  • Persons younger than 20 years or older than 64 years were not included.

Conclusion:

  • Oral corticosteroid bursts are frequently prescribed in the general adult population in Taiwan.
  • The highest rates of GI bleeding, sepsis, and heart failure occurred within the first month after initiation of steroid therapy.

Reference:

  • Yao TC, Huang YW, Chang SM, Tsai SY, Wu AC, Tsai HJ. Association Between Oral Corticosteroid Bursts and Severe Adverse Events : A Nationwide Population-Based Cohort Study. Ann Intern Med. 2020 Sep 1;173(5):325-330. doi: 10.7326/M20-0432. Epub 2020 Jul 7. PMID: 32628532.
  • https://pubmed.ncbi.nlm.nih.gov/32628532/

Coumadin (Warfarin) Dosing/Management

Warfarin Maintenance Dosing Protocol with INR Goal 2-3 (Class IIb, Level C)

INR < 1.5 INR 1.5 - 1.9 INR 2.0 - 3.0 INR 3.1- 4.0* INR 4.1-5.0* INR 5.1- 9.0* INR > 9.0
Extra Dose; Increase weekly dose 10-20% Increase weekly dose 5-10% No change Decrease weekly dose 5-10% Hold 1 dose; Decrease weekly dose 10% Consider: Hold 2 doses; Decrease weekly dose 10-20%; Check Hct Urgent patient evaluation

Warfarin Maintenance Dosing Adjustment Nomogram for INR Goal of 2-3

Adjustment Guidelines

  • A: Baseline CBC, PT/INR required prior to continuation of warfarin therapy.
  • B: Assess patient compliance and determine if any changes have been made that may impact therapy: 1) addition of interacting drugs or herbal products; 2) changes in diet (eating/not eating) 3) changes in health status.
  • C: Based on the INR results make adjustments to the current therapy based on the ranges below:

INR < 1.5

  1. Verify compliance (if non-compliant: resume therapy at previous dose).
  2. If dosage adjustment needed: increase maintenance dose by 5%- 20%*.
    • Some clinicians recommend a 'booster dose' 1.5 to 2x the daily maintenance dose x 1
  3. Return: 3 - 7 days

INR 1.5 - 1.9

  • Verify compliance (if non-compliant: resume therapy at previous dose).
  • [* Some clinicians recommend a 'booster dose' 1.5 to 2x the daily maintenance dose x 1 ]
  • If dosage adjustment needed: increase maintenance dose by 5 - 15% (use lower end of this range for INR values close to the therapeutic range).
  • Return: 3 - 7 days

INR 2.0 - 3.0

  • No Changes Needed
  • Return: 4 weeks

INR 3.1 - 3.4

  • Dose adjustment usually not necessary if level is at the low end of this range ( 3.1 - 3.2) and at least two previous levels were therapeutic. Recheck in 3 to 7 days.
  • Consider decreasing dose by 5 - 10% and/or holding one dose.
  • Recheck in 3- 7 days.

INR 3.5 - 3.9

  • consider holding one dose.
  • evaluate any clinical changes that may have occurred with the patient (eating regularly, no new medications, etc.)
  • consider decreasing the maintenance dose by 5 -15% depending on magnitude of the INR elevation.
  • Return: 1- 3 days.

INR 4.0 - 4.9 with no significant bleeding

  • Hold warfarin until INR is within the therapeutic range.
  • Recommend lowering maintenance dose by 5%- 20%
  • Increase frequency of monitoring until problem resolved (daily initially).
  • (8th ACCP): If only minimally above therapeutic range or associated with a transient causative factor, no dose reduction may be required.

INR > 5.0

  • Review latest ACCP guidelines - ELEVATED INRs.
  • Return daily until therapeutic.

References:

  • Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J, Kovacs MJ, Svensson PJ, Veenstra DL, Crowther M, Guyatt GH; American College of Chest Physicians. Evidence-based management of anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 Feb;141(2 Suppl):e152S-84S. doi: 10.1378/chest.11-2295.
  • https://www.uwhealth.org/files/uwhealth/docs/pdf2/Ambulatory_Warfarin_Guideline.pdf

diclofenac

The primary difference between oral diclofenac potassium and diclofenac sodium lies in their pharmacokinetic properties and clinical applications.

Diclofenac potassium is formulated for rapid absorption and quick onset of action. This makes it particularly useful for acute pain conditions where fast relief is desired. Diclofenac potassium is available in immediate-release tablets, liquid-filled soft gel capsules, and powder for oral solution, all designed to provide rapid pain relief. For example, diclofenac potassium has been shown to provide pain relief within 30 to 60 minutes, making it suitable for conditions like acute musculoskeletal pain and migraines.

Diclofenac sodium, on the other hand, is often formulated in delayed-release or extended-release forms. These formulations are designed to provide a more sustained release of the drug, which is beneficial for chronic conditions requiring long-term management, such as osteoarthritis and rheumatoid arthritis. Diclofenac sodium delayed-release tablets have a slower onset of action compared to diclofenac potassium but offer the advantage of less frequent dosing, which can improve patient compliance.

For the treatment of muscle pain, topical diclofenac is generally considered the best option due to its efficacy and safety profile. According to a systematic review by Wiffen and Xia, topical diclofenac formulations, such as diclofenac Emulgel, have shown significant effectiveness in reducing acute musculoskeletal pain with a number needed to treat (NNT) of 1.8 (95% CI 1.5-2.1).

For chronic musculoskeletal pain, topical diclofenac also demonstrates effectiveness, although the NNT is higher (9.5 [95% CI 7-14.7]), indicating it is less effective than in acute settings but still beneficial.

In summary, diclofenac potassium is preferred for rapid pain relief in acute settings, while diclofenac sodium is more suitable for chronic pain management due to its sustained release properties. Both forms are effective NSAIDs but are tailored to different clinical needs based on their pharmacokinetic profiles.

GLP-1 Agonists

Medication Freq Titration Schedule Equiv Doses:          
Dulaglutide Weekly 4 Weeks   0.75 mg 1.5 mg 3-4.5 mg    
Semaglutide Weekly 4 Weeks   0.25 mg 0.5 mg 1 mg 2 mg  
Liraglutide Daily 1 Weeks 0.6 mg* 1.2 mg 1.8 mg      
Semaglutide po Daily 4 Weeks 3 mg* 7 mg 14 mg      
Tirzepatide Weekly 4 Weeks       2.5 mg 5 mg 7.5-15 mg

*Sensitizing dose - No glycemic impact

Reference:

Medication Prescription Helps

  • Ozempic 0.25 or 0.5 mg/dose comes in packs of one 1.5 mL pens (total of 1.5 mL). Quantity is typically:
    • 1.5 mL per 28 days (Note initiation is technically 42 days but most plans pay for only 34 or less day supplies)
    • 4.5 mL per 90 days
  • Ozempic 1 mg/dose comes in packs of two 1.5 mL pens (total of 3 mL). Quantity is typically:
    • 3 mL per 28 days
    • 9 mL per 84 days
  • Qsymia - 30 day for $98
    • New Patient Pack
      • Qsymia 3.75 mg/23 mg - 14-day
      • Qsymia 7.5 mg/46 mg 14 + 30 - 30-day $98
    • Titration Pack $98
      • Qsymia 11.25 mg/69 mg - 14-day
      • Qsymia 15 mg/92 mg 14 + 30 - 30-day
  • Xifaxin
  • Insulin Prescribing
    • Needle/Syringe Options:
      • 30u insulin syringes/31 ga needles
      • 50u insulin syringes/31 ga needles
      • 100u insulin syringes/31 ga needles
    • ReliOn NPH or Regular insulin:
      • 3 ml or 10 ml vials of 100 uits/ml

Medication Resources

Medication thoughts relating to homeless persons/street

  • Albuterol
    • Enhances effects of crack cocaine
  • Benzodiazepines
    • Sought for calming and sedation effects
  • B-blockers and clonidine
    • Discontinuation can result in rebound HTN
    • B-blockers can exacerbate depression at initiation
    • Clonidine can prolong effects of heroin and other opioids
  • Buproprion
    • Can be pulverized and snorted to get high
  • Cough syrup
    • Promethazine and codeine - called lean used with marijuana
  • Calcium channel blockers, COX-2 inhibitors, NSAIDs, and DM meds
    • May exacerbate heart failure
  • Diuretics
    • Can exacerbate dehydration
  • Anticholinergic meds with diuretics
    • Can cause hyperpyrexia
  • Drugs metabolized in liver
    • Caution in those with hepatitis and alcohol use
  • Psuedoephedrine
    • Can be used for methamphetamine
  • Quetiapine
    • Enhances the effect of heroin
  • Statins
    • Can worsen outcomes in those with elevated liver tranaminases, or hepatitis

References:

  • AFP Vol 89 No 8 Apr 2014

Medicine Reconciliation

Medication errors represent the most common patient safety error.

  • (Bates DW, Spell N, Cullen DJ, et al. The costs of adverse drug events in hospitalized patients.JAMA.1997;277:307–11.)

More than 40 percent of medication errors are believed to result from inadequate reconciliation in handoffs during admission, transfer, and discharge of patients. Of these errors, about 20 percent are believed to result in harm.

  • (Rozich JD, Howard RJ, Justeson JM, et al. Patient safety standardization as a mechanism to improve safety in health care.Jt Comm J Qual Saf.2004;30(1):5–14.)

Metformin Tips

  • Take with a meal to reduce the risk of stomach upset. Once-daily dosages should be taken with the evening meal.
  • Metformin is usually started at a low dosage before being titrated up. Dosages may vary between individuals.
  • Splitting dosages throughout the day (rather than taking a single dose) may improve gastric side effects such as nausea, diarrhea, and indigestion.
  • Swallow slow-release tablets whole; do not crush, break, or chew.
  • Do not drink large amounts of alcohol or drink it daily while taking metformin because this may increase your risk of lactic acidosis.
  • Monitoring of blood sugars and other regular laboratory tests including kidney function are needed.
  • May need to be temporarily discontinued before undergoing investigations requiring contrast media, or if you become dehydrated.
  • The outer case of some slow-release metformin tablets may be visible in the stools; this does not mean the drug has not been absorbed.
  • Ensure you are educated about the importance of diet and exercise in the management of type 2 diabetes because it is important to use lifestyle measures to improve your condition in addition to medications.
  • Tell your doctor if you become unwell with severe vomiting, diarrhea, or a fever because these types of illnesses may lead to severe dehydration and you may need to temporarily stop metformin. Also, talk to your doctor if you develop cold hands or feet, muscle pain, dizziness, a slow heartbeat, have trouble breathing, stomach pains, or severe nausea or vomiting.
  • Talk to your doctor or pharmacist before taking any other medications, including those bought over-the-counter, to check that they will be compatible with metformin.
  • Tell your doctor if you are pregnant or intend to become pregnant while taking metformin. It is not known how metformin affects the fetus or a breastfed infant.

Methotrexate (MTX)

Methotrexate administration:

  • 10 mg - 25 mg weekly
  • Once weekly as a single dose or in divided doses given over a 24-hour period.

Folic Acid Supplementation:

Pre MTX Eval

A premethotrexate evaluation is important to ensure proper patient selection for this effective but potentially toxic drug.

  • A baseline chest radiograph is recommended to screen for pre-existing lung disease
  • Complete blood count with differential
  • Platelet count
  • Serum creatinine
  • Blood urea nitrogen
  • Urinalysis
  • Liver function tests
  • Serum bilirubin
  • Serum albumin
  • Hepatitis A, B, and C serologies
  • HIV risk assessment/testing, if appropriate Chest radiograph

Monitor for:

  • Hepatotoxicity
    • Monitoring of serum aspartate aminotransferase (AST) and serum albumin levels is recommended for all patients receiving methotrexate.8 These laboratory assessments were correlated with serious liver disorders in a mail survey of rheumatologists.
    • Approximately 30 percent of all patients on long-term therapy have AST elevation.
    • Values exceeding two times the normal level for a period of one month warrant discontinuation of therapy
  • Nephrotoxicity
  • Pulminary toxicity
    • Symptoms include persistent dry, nonproductive cough, dyspnea or both
    • Radiograph abnormalities occurring with methotrexate therapy include interstitial and alveolar infiltrates, hilar adenopathy and pleural effusion, occasionally progressing to fibrosis, scarring and honeycomb changes
  • Bone marrow toxicity
    • Monitoring signs of myelosuppression can reduce complications such as severe anemia, potential bleeding and sepsis.8 Patients with aplastic anemia need to be treated with leucovorin rescue.
  • Labs:
    • LFTs
    • CBC
    • CMP
    • Frequency: After initiation of medical therapy with methotrexate, follow-up tests should include monitoring of CBC, renal function test, and liver function tests are recommended weekly for 4 weeks and then at least bi-monthly.

References:

Toxic effects

Major toxic effects:

  • hepatic
  • pulmonary
  • renal
  • bone marrow abnormalities

Minor toxic effects:

  • stomatitis
  • malaise
  • nausea
  • diarrhea
  • headaches
  • mild alopecia

Toxic effects are common but respond to folate supplementation:

  • Folate supplementation with 1 mg daily or 7 mg once weekly should be considered for all patients
  • Avoid taking the folate dose on the same day as the methotrexate dose.

To reduce the incidence of major toxic effects, methotrexate should never be given in daily doses.

Relative contraindications:

  • renal dysfunction
    • contraindicated in any patient with a creatinine clearance of less than 50 mL per minute
  • liver disease
  • active infectious disease
  • excessive alcohol consumption

Both women and men of reproductive age should use birth control during methotrexate therapy.

Potential drug interactions:

  • salicylates
  • nonsteroidal anti-inflammatory drugs
  • Trimethoprim/sulfamethoxazole (Bactrim, Septra) can enhance the cytotoxic effects of methotrexate because trimethoprim is an antifolate reductase inhibitor.
  • Other drugs that may displace methotrexate from protein binding sites include barbiturates, phenytoin, retinoids, oral sulfonylureas and tetracycline.

Risk Factors for Potential Hepatotoxicity

Risk Factors for Potential Hepatotoxicity

  • Excessive alcohol intake
  • Elevated serum aspartate aminotransferase levels
  • Chronic hepatitis B or C
  • Increased age
  • History of liver disease
  • History of intravenous drug abuse
  • History of inheritable liver disease
  • Diabetes (insulin enhances cytotoxicity of methotrexate)
  • Obesity (third spacing of methotrexate)
  • History of significant exposure to known hepatotoxic drugs

Patient Education Guide for the Physician

  • Tell patients to avoid alcohol including beer, wine and hard liquor because of the increased risk of liver disease.
  • Inform male and female patients of reproductive age that they should practice appropriate birth control (abstinence, oral contraceptives or condom plus foam, etc.).
  • Discuss potential drug interactions, especially salicylates and over-the-counter NSAIDs.
  • Tell patients not to start or stop an NSAID without first checking with you.
  • Tell patients to call immediately if they develop signs of infection (immunosuppression), coughing or shortness of breath (pulmonary toxicity) or unusual bleeding (liver or bone marrow suppression).
  • Emphasize the weekly dose and warn patients that daily dosing of this drug is fatal. If an accidental overdose occurs, an antidote can be used (leucovorin rescue).
  • Be sure that patients fully understand the need for close follow-up and monitoring for toxicity.
  • The most important side effects to mention are loss of appetite, nausea (rarely vomiting), diarrhea and stomatitis. There is also the potential for serious side effects; hepatotoxicity, pulmonary toxicity, myelosuppression and nephrotoxicity.
  • Warn patients about the potential development of malignancy, specifically lymphoma.

Metoprolol

Immediate release (metoprolol tartrate):

  • Oral: 25 to 100 mg twice daily (AHA/ACC/HRS [January 2014])
  • More frequent dosing is appropriate in the acute setting while titrating to a maintenance dose.
  • Migraine prophylaxis (50-100mg bid)
  • HTN

Extended release (metoprolol succinate):

  • Oral: 50 to 400 mg once daily (AHA/ACC/HRS [January 2014]).
    • PVCs
    • Hyperthyroidism
    • HTN
    • CHF

My (Formulary) Goto/Easy medication choices

See also:

My (Formulary) Goto/Easy medication choices

  • Emergency Headache Abortive
    • Phenergan / Compazine
  • HRT:
    • estradiol 0.05 mg patch twice a week
    • progesterone 200 mg capsule
  • Monophasic ocp
    • Sprintec-28
  • Otitis Externa
    • Neomycin - polymyxin B - hydrocortisone otic
    • 10 ml
    • 5 gtts in affected ear every 6-8 hours for 10 days
  • Severe Contact Dermatitis
    • 2 shot solution:
      • Decadron + DepoMedrol
  • Rosacea
    • Metronidazole topical gel 0.75% 45 g AAA bid ($30-40)

My Medication Rules

Overall medication thoughts:

  1. Less is More
  2. Start low, go slow

No go's:

  • Do not use Niacin
    • Does not significantly reduce the risk of major vascular events but does increase the risk of serious adverse events. (…there were significant and excess adverse events related to gastrointestinal, musculoskeletal, infectious, and bleeding complications, as well as substantial excess adverse events related to loss of glycemic control among persons with diabetes and new-onset diabetes among persons without diabetes at baseline. Of great concern was a 9% increase in the risk of death (number needed to harm, 200) associated with niacin–laropiprant that was of borderline statistical significance (P=0.08).)
    • "On the basis of the weight of available evidence showing net clinical harm, niacin must be considered to have an unacceptable toxicity profile for the majority of patients, and it should not be used routinely"
    • (Effects of Extended-Release Niacin with Laropiprant in High-Risk Patients; The HPS2-THRIVE Collaborative Group; N Engl J Med 2014; 371:203-212)
    • (Effects of Extended-Release Niacin with Laropiprant in High-Risk Patients; The Niacin and HDL Cholesterol — Time to Face Facts; Donald M. Lloyd-Jones, M.D.; N Engl J Med 2014; 371:271-273)
  • Do not use Xanax
  • Do not prescribe Tessalon Perles - there is evidence they do not work
  • Do not use TZDs
    • Associated with weight gain, heart failure, and edema
  • Avoid Fioricet
  • Do not recommend Fish Oil for Dyslipidemia
  • Do not suggest or recommend phenylephrine - It just doesn't work

Psychiatry:

  • The best SSRI's are Lexapro (escitalopram) and Zoloft (sertraline)
  • Women with depression and anxiety get Effexor (venlafaxine) or Wellbutrin (bupropion)
  • Add Wellbutrin before maxing SSRI
  • Consider propranolol of hydroxyzine instead of benzos for an executive sedative maintaining cognitive function

Specific Meds:

  • HCTZ - only use the 25mg dose (12.5 doesn't do anything and 50mg just adds side effects)
  • Melatonin - Use 3-4 hrs before bedtime in conjunction with sleep hygeine
  • Statins - Stop at age 90 or if life expectancy is <10 years
  • PPIs - Use short term (4-8 wks) only

Therapies I like:

  • Physical Therapy (SOR A)
  • Flonase (SOR A)
  • Hydroxyzine
  • ASA for migraine abortive (SOR A)
  • Pseudoephedrine for congestion (LOE A)
  • Every elderly patient should have a dog

Conditions:

  • If you use Abx for acute bacterial sinusitis, use right drug and dose (Augmentin 875mg bid and for >65yo, hospitalized, recent Abx use: use 2g bid)
  • Allergic rhinitis - use flonase (or similar) using 2 sprays with opposite hand into nare once daily while looking down for proper placement

Naltrexone: Low Dose Naltrexone

  • Low-dose naltrexone is as effective as amitriptyline in the treatment of painful diabetic neuropathy and has a superior safety profile (strength of recommendation [SOR], B; single randomized controlled trial [RCT]).
    • Dosing comparison: maximum of 4 mg of naltrexone or 25 to 50 mg of amitriptyline
  • Low-dose naltrexone significantly reduced pain by 32% in inflammatory conditions and 44% in neuropathic conditions (SOR, B; single retrospective cohort study).
    • The number needed to treat to observe a ≥ 50% reduction in pain scores was 3.2
  • Doses as low as 5.4 mg were found to reduce pain in 95% of patients with fibromyalgia (SOR, B; single prospective dose-response study).
    • The primary outcomes were effective dose for 50% of fibromyalgia patients (3.88 mg; 95% CI, 3.39-4.35) and effective dose for 95% of fibromyalgia patients (5.4 mg; 95% CI, 4.66-6.13).

Reference:

  • J Fam Pract. 2023 September;72(7):320-321 | doi: 10.12788/jfp.0654

OTC Symptom Management   edit

Allergies

  • Flonase 2 sprays per nostril daily

Congestion

  • Sudafed 30-60 mg every 4 hours

Cough

  • Dextromethorphan 15-30 mg every 6 hours (can be a pill or cough syrup)

Mucous (thick) and/or Post-Nasal Drip

  • Guaifenessin 100-400 mg every 4 hours

Sore throats

  • Ibuprofen 400 mg every 6 hours
  • Lozenges with benzocaine in them

Pharmacies: Canadian Pharmacies

Pharmacies: Compounding Pharmacies   edit

Pharmacies: On-line Discount Pharmacies

Pharmacies: Publix Save on Medications

$7.50/3 mo

Table 26: Heart Health/Cardiovascular
Medication Strength Quantity
clonidine 0.1 mg, 0.2 mg, or 0.3 mg tablet 90
clopidogrel 75 mg tablet 90
furosemide 20 mg, 40 mg, or 80 mg tablet 90
hydralazine 10 mg, 25 mg, 50 mg, or 100 mg tablet 90
hydrochlorothiazide 12.5 mg capsule; 25 mg or 50 mg tablet 90
jantoven (warfarin) 1 mg, 2 mg, 2.5 mg, 3 mg, 4 mg, 5 mg, 6 mg; 7.5 mg, or 10 mg tablet 90
metoprolol tartrate 25 mg, 50 mg, or 100 mg tablet 180
triamterene-HCTZ 37.5–25 mg tablets or capsules; or 75–50 mg tablets 90
Table 27: Diabetes
Medication Strength Quantity
glimepiride 1 mg, 2 mg, or 4 mg tablet 90
Table 28: Cholesterol
Medication Strength Quantity
simvastatin 5 mg, 10 mg, 20 mg, 40 mg, or 80 mg tablet 90
Table 29: Mental Health
Medication Strength Quantity
amitriptyline HCl 10 mg or 25 mg tablet 90
buspirone 5 mg, 10 mg, or 15 mg tablet 180
sertraline 25 mg, 50 mg, or 100 mg tablet 90
Table 30: Seizure Disorders
Medication Strength Quantity
topiramate 25 mg, 50 mg, 100 mg, or 200 mg tablet 180
Table 31: Parkinson's Disease
Medication Strength Quantity
ropinirole 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, or 5 mg tablet 180
Table 32: Alzheimer's Disease
Medication Strength Quantity
donepezil 5 mg or 10 mg tablet 90
Table 33: Osteoporosis
Medication Strength Quantity
alendronate 35 mg or 70 mg tablet 12
Table 34: Gout
Medication Strength Quantity
allopurinol 100 mg or 300 mg tablet 90
Table 35: Arthritis/Pain
Medication Strength Quantity
meloxicam 7.5 mg or 15 mg tablet 90
Table 36: Gastrointestinal
Medication Strength Quantity
omeprazole 20 mg capsule 90
Table 37: Asthma & Allergies
Medication Strength Quantity
cetirizine HCl 5 mg or 10 mg tablet 90
Table 38: Men's Health
Medication Strength Quantity
tamsulosin 0.4 mg capsule 90
Table 39: Women's Health
Medication Strength Quantity
estradiol 0.5 mg, 1 mg, or 2 mg tablet 90

Publix Free Medications

Free

Table 40: Heart Health/Cardiovascular
Medication Strength Quantity
amlodipine 2.5 mg, 5 mg, 10 mg 90
lisinopril all 180
Table 41: Diabetes
Medication Strength Quantity
metformin 850 mg 270
metformin 1000 mg 225
Table 42: Antibiotics
Medication
amoxicillin
ampicillin
SMZ-TMP (tablets)
Penicilliin VK

Placebo

Placebo Effects

  1. Patients with knee arthritis receiving either established orthopedic surgeries or a placebo "sham" surgery showed the same level of improvements in pain and function over 24 months in a clinical trial published in the New England Journal of Medicine.
    • Moseley JB, O'Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH, Hollingsworth JC, Ashton CM, Wray NP. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002 Jul 11;347(2):81-8. doi: 10.1056
  2. In a massive review of treatment outcome data reported in the British Medical Journal —including data from 232 clinical trials and over 73,000 participants — antidepressants were no more effective than placebo treatments for 85% of participants.
    • Stone, M. B., Yaseen, Z. S., Miller, B. J., Richardville, K., Kalaria, S. N., & Kirsch, I. (2022). Response to acute monotherapy for major depressive disorder in randomized, placebo-controlled trials submitted to the US Food and Drug Administration: individual participant data analysis. BMJ, 378(e067606). http://dx.doi.org/10.1136/ bmj-2021-067606
  3. In an October 2022 paper published in JAMA, participants with chronic low back pain receiving a form of placebo spinal column stimulation showed the same level of improvement in pain disability as participants receiving cutting edge high frequency spinal column stimulation.
    • Hara S, Andresen H, Solheim O, et al. Effect of Spinal Cord Burst Stimulation vs Placebo Stimulation on Disability in Patients With Chronic Radicular Pain After Lumbar Spine Surgery: A Randomized Clinical Trial. JAMA. 2022;328(15):1506–1514. https://doi.org/10.1001/jama.2022.18231
  4. A 2018 review of 17 studies examining placebo effects related to caffeine found that 13 out of the 17 studies demonstrated positive caffeine expectation effects — across outcomes ranging from physical endurance, strength performance, and cognitive function — with the size of these placebo/expectation effects often approaching the effects of direct caffeine consumption.
    • Shabir A, Hooton A, Tallis J, F Higgins M. The Influence of Caffeine Expectancies on Sport, Exercise, and Cognitive Performance. Nutrients. 2018 Oct 17;10(10):1528. doi: 10.3390/nu10101528.
  5. Participants consuming a milkshake labelled as "indulgent" showed a significantly larger change in the level of their appetite hormone, ghrelin, than participants consuming a milkshake labelled "sensible", despite the two shakes containing identical calories and ingredients.
    • Crum AJ, Corbin WR, Brownell KD, Salovey P. Mind over milkshakes: mindsets, not just nutrients, determine ghrelin response. Health Psychol. 2011 Jul;30(4):424-9; discussion 430-1. doi: 10.1037/a0023467.
  6. Researchers have administered naloxone — a drug that blocks the effects of opioids — to participants, showing that the naloxone blocks both the effects of opioid medicine and the effects of opioid placebos. This means that expectations about the effects of the opioid medicine alone — absent any active opioid medicine — can directly trigger internal analgesic biological activity.
    • Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci. 1999 Jan 1;19(1):484-94. doi: 10.1523/JNEUROSCI.19-01-00484.1999.

Pregnancy

  • Nausea/Vomiting:
    • Likely beneficial:
      • Acupressure
      • Ginger
      • Pyridoxine
    • Unknown effectiveness:
      • Acupressure
      • Acupuncture
      • Corticosteroids
      • Prochlorperazine
      • Promethazine

References:

  • AFP Vol 92, No6 Sep 2015

Probiotics

Conditions and evidence:

  • Irritable bowel syndrome
    • Significantly decrease IBS symptoms, abdominal pain, bloating, flatulence
    • Use Lactobacillus and Bifidobacterium species for 4-6 weeks
    • LOE A
  • Inflammatory bowel disease
    • Induce and maintain remission in ulcerative colitis - NO benefit for Crohn's disease
    • Use Lactobacillus and Bifidobacterium species for 8-12 weeks or longer
    • LOE A
  • Antibiotic associated diarrhea
    • Reduce risk of AAD
    • Use Lactobacillus alone or with Bifidobacterium species for 7 days or
    • Use Saccharomyces boulardii for 5-7 days
    • LOE A
  • Acute infectious diarrhea
    • Shorten duration and reduce severity
    • Use L casei rhamnosus for 5-7 days or
    • Use Saccharomyces boulardii for 5-7 days
    • LOE A
  • Travelor's diarrhea
    • Prevent up to 85% of cases
    • Use Saccharomyces boulardii for 3 weeks or
    • Use Lactobacillus alone or with Bifidobacterium species for 3 weeks
    • LOE B
  • Eczema
    • May prevent in first 2 years of life
    • Galacto- and fructo-oligosaccharide (9:1 ratio) and acidic oligosaccharide in infants
    • Falacto- and fructo-oligosaccharide (9:1 ratio) in infants
    • LOE B
  • Diabetes
    • Significant reduction in at least 1 of 6 parameters of glycemic control
    • Lactobacillus alone or with Bifidobacterium species for 6-8 weeks
    • LOE C

JFP Vol 65 No 1 Jan 2016

Conditions with Strength of Recommendation (SOR) A:

  • Acute Infectious Diarrhea
    • Shortened duration by approx 24hrs
    • Reduced risk of diarrhea lasting longer than 4 days
  • Travelers Diarrhea
    • Effectively prevented traveler's diarrhea in US and European travelers who visited a variety of vacation spots
  • Antibiotic-associated diarrhea
    • Effective for treating and preventing antibiotic-associated diarrhea - NNT=13
    • No significant decrease in AAD rates in hospitalized patients over age 65
  • Clostridium difficile-associated diarrhea

Conditions with Strength of Recommendation (SOR) B:

  • DO NOT use for preventing or treating Crohn's disease or Ulcerative Colitis
    • Multiple meta-analyses with no benefit
  • Consider the probiotic Bifidobacterium bifidum MIMBb75 for patients with irritable bowel disease
    • NNT=4
    • In RCTs, probiotic supplements - but not yogurt containing probiotics - reduced IBS symptoms

Ref: J Fam Pract. 2015 Mar;64(3):151-155.

Procedural Sedation and Analgesia

Procedural sedation and analgesia (PSA) involves the use of short-acting analgesic and sedative medications to enable clinicians to perform procedures, while monitoring the patient closely for potential adverse effects. This process was previously (and inappropriately) termed "conscious sedation." (see 'Definitions' above.PSA may be used for any procedure in which a patient's pain or anxiety may be excessive and may impede performance. There are no absolute contraindications to PSA. Relative contraindications include: older age, significant medical comorbidities, and signs of a difficult airway. Whether the patient recently ate should be considered before performing PSA, although this may not increase aspiration risk. (See 'Indications' above and 'Contraindications and precautions' above.)The number of clinicians needed to perform PSA and the procedure safely may vary according to the patient and the procedure. In most cases, one clinician performs the procedure while another (usually a nurse) administers the sedative agents and monitors and records the patient's vital signs and clinical status. Whenever possible, we suggest that this minimum standard be met. (See 'Prerequisites and personnel' above.)Proper monitoring during PSA is crucial. The patient's blood pressure, heart rate, and respiratory rate should be measured at frequent, regular intervals; oxygen saturation (SaO2), end-tidal carbon dioxide level (EtCO2), and cardiac rhythm should be monitored continuously. (See 'Monitoring' above.)Serious complications attributable to PSA rarely occur. Significant respiratory compromise develops in less than one percent of cases. Adverse outcomes may include respiratory depression with hypoxia or hypercarbia, cardiovascular instability, vomiting and aspiration, and inadequate sedation preventing completion of the procedure. All equipment and medications necessary for airway management should be at the bedside during PSA. (See 'Complications' above and 'Equipment' above.)Ideal drugs for PSA have a rapid onset and short duration of action, maintain hemodynamic stability, and do not cause major side effects. Several medications are commonly used and no single drug is ideal for all situations (table 2). Medications used for PSA are discussed in the text. (See 'Medications' above.)PSA is most often performed in patients without major comorbidities or hemodynamic instability. In such patients, we suggest that PSA be performed using propofol (Grade 2B). Etomidate may also be used. The relative advantages and disadvantages of each drug are discussed in the text. (See 'Patients without increased risk' above.)Older patients are at increased risk of complications during PSA. Therefore, sedatives administered to older patients for PSA, regardless of the agent, should be given using a lower starting dose, slower rates of administration, and less frequent dosing intervals. (See 'Elderly patients' above.)In some circumstances, clinicians, after carefully considering the relative risks and benefits, may elect to perform PSA in patients at some increased risk of complications. In patients at risk of hypotension, we suggest that either etomidate or ketamine be used for PSA (Grade 2C). In patients who may have a potentially difficult airway or have compromised respiratory function, we suggest that ketamine be used for PSA (Grade 2C). (See 'Patients at increased risk' above.)Criteria for safe discharge following PSA are described in the text. (See 'Discharge criteria' above.)

  • Fentanyl and Midazolam:
    • One reasonable approach to dosing these medications when they are used together is as follows:Give midazolam first: 0.02 mg/kg (maximum 2 mg)Wait two minutes and observe patient response; give second dose of midazolam if necessaryGive fentanyl: 0.5 mcg/kgObserve patient; may repeat fentanyl dose every two minutes as necessary; titrate to effectUse smaller doses and longer intervals between doses in the elderly and patients with compromised hepatic or renal function

Drugs:

  • Propofol is given by slow injection in an initial loading dose of 0.5 to 1 mg/kg IV, followed by doses of 0.5 mg/kg IV every three to five minutes as necessary until the appropriate level of sedation is achieved.  It takes effect within approximately 40 seconds and its duration of action is approximately six minutes.  Propofol > Etomidate as no myoclonus so likely more successful procedures.
    • A sedative and amnestic but No analgesia
    • Contains egg and soy - watch with allergies
  • Etomidate is given IV over 30 to 60 seconds in doses of 0.1 to 0.15 mg/kg, less than the dose used for rapid sequence intubation. It can be redosed approximately every three to five minutes as needed. Etomidate's onset of action is almost immediate and its duration of effect is 5 to 15 minutes
    • Myoclonus
    • No analgesia
  • Midazolam is usually given IV over one to two minutes in doses of 0.02 to 0.03 mg/kg. Often in adults, midazolam is given 0.5 or 1 mg at a time and titrated to effect. No single dose should exceed 2.5 mg. Repeat doses may be given every two to five minutes as necessary.  Its time of onset is two to five minutes and its duration of action is 30 to 60 minutes
    • Anxiolysis and amnesia but No analgesia
  • Fentanyl is usually given by slow IV push in doses of 0.5 to 1 mcg/kg every two minutes until an appropriate level of sedation and analgesia is achieved. The maximum total dose is generally 5 mcg/kg or approximately 250 mcg, but higher doses may be needed in some instances.  It has 75 to 125 times the potency of morphine, a rapid onset of action (two to three minutes), and a short duration of effect (30 to 60 minutes), but has no amnestic properties.
  • Ketamine is generally given IV to adults, which enables immediate onset, but can be given intramuscularly. The duration of effect is 10 to 20 minutes. For PSA in adults, a dose of 1 to 2 mg/kg is given IV over one to two minutes. Doses of 0.25 to 0.5 mg/kg may be repeated every five to ten minutes thereafter.
    • Because of its rapid onset, relatively short duration of action, and excellent sedative and analgesic properties, it is often used for brief, painful procedures such as fracture reduction or laceration repair.
    • It produces a trance-like state and provides sedation, analgesia, and amnesia, while preserving upper airway muscle tone, airway protective reflexes, and spontaneous breathing
    • Emergence reactions

Elderly:

  • Sedatives administered to older patients for PSA, regardless of the agent, should be given at a lower starting dose with slower rates of administration and less frequent dosing intervals. In elderly patients without major comorbidities or hemodynamic instability, it may be best to perform PSA using an ultrashort-acting sedative such as propofol. Procedures in elderly patients with major comorbidities are probably best performed in the operating room.

Protocol for radiocontrast in high-risk patients (Contrast Allergy)

Pretreatment (optional):

  • Prednisone 50mg po at 13hrs, 7hrs, and 1hr before medium injection
  • Diphenhydramine 50mg IV, IM, or PO 1 hr before medium injection

Emergency

  • Methylprednisolone 40mg IV or hydrocortisone 200mg IV immediately and then every 4 hours until contrast medium injetion
  • PLUS diphenhydramine 50mg IV 1 hr before contrast injection
  • NOTE: For IV steoids to be effective, administer less than 4-6hrs before medium injection

References:

  • Consultant Oct 2017

Pseudoephedrine (Sudafed)

Effect of oral pseudoephedrine on blood pressure and heart rate: a meta-analysis

Oral pseudoephedrine is commonly used to treat symptoms of rhinitis and rhinorrhea, but its effect on blood pressure (BP) and heart rate (HR) remains uncertain. We assessed whether pseudoephedrine causes clinically meaningful elevations in HR or BP.

We searched MEDLINE, EMBASE, and the Cochrane Library for English-language, randomized placebo-controlled trials of oral pseudoephedrine treatment in adults.

The primary data extracted were systolic BP (SBP), diastolic BP (DBP), and HR. Study quality was assessed using the methods of Jadad, and data were synthesized using a random-effects model and weighted mean differences. Twenty-four trials had extractable vital sign information (45 treatment arms; 1285 patients).

Results:

  • Pseudoephedrine caused a small but significant increase in SBP (0.99, mm Hg; 95% CI, 0.08 to 1.90) and HR (2.83 beats/min; 95% CI, 2.0 to 3.6), with no effect on DBP (0.63 mm Hg, 95% CI, -0.10 to 1.35).
  • The effect in patients with controlled hypertension demonstrated an SBP increase of similar magnitude (1.20 mm Hg; 95% CI, 0.56 to 1.84 mm Hg).
  • Higher doses and immediate-release preparations were associated with greater BP increases.
  • Studies with more women had less effect on BP or HR.
  • Shorter duration of use was associated with greater increases in SBP and DBP.

Reference:

  • Salerno SM, Jackson JL, Berbano EP. Effect of oral pseudoephedrine on blood pressure and heart rate: a meta-analysis. Arch Intern Med. 2005 Aug 8-22;165(15):1686-94. doi: 10.1001/archinte.165.15.1686. PMID: 16087815.
  • https://pubmed.ncbi.nlm.nih.gov/16087815/

Sick call med list

  • 1-2-3 mouthwash
  • Acetaminophen
  • Albuterol inhaler
  • Amoxicillin 500mg
  • Augmentin 1%
  • Azithromycin 250mg
  • Bacitracin Oint
  • Bacitracin Opth Oint 3.5gm
  • Benzoyl peroxide gel 5%
  • Biaxin XL 500mg
  • Bismuth subslicylate
  • Calamine lotion
  • Calcium 600mg
  • Cepacol lozenge
  • Ciprofloxacin opth oint 3%
  • Clindamycin 150mg
  • Clotrimazole fungal cream 1%
  • Dibucain oint 1oz
  • Diphenhydramine 25mg
  • Docusate 100mg
  • Doxycycline 100mg
  • Esomeprazole 20mg
  • Fiber-lax 500mg
  • Fluticasone 50mcg
  • Guaifenesine DM 10mg/5ml
  • Hydrocortisone cream 1%
  • Hydrocortisone lotion 1%
  • Hydrocortisone suppository 25mg
  • Hydroxyzine 25mg
  • Ibuprofen 800mg
  • Indomethacin 25mg
  • Loperamide 2mg
  • Loratadine 10mg
  • Lubricant eye drops 1%
  • Mucinex D 600mg
  • Mupirocin oint 2%
  • Muscle rub
  • Naphcon A Ophth Sol
  • Methocarbamol 500mg
  • Naproxen 500mg
  • Nergesic forte
  • Ondansetron-ODT 4mg
  • Oxymetazoline nasal spray 0.05%
  • Prednisone 20mg
  • Proctofoam HC 10gm
  • Promethazine 25mg
  • Psuedoephedrine 30mg
  • Saline nasal spray
  • SMZ-TMP DS 800/160mg
  • Tolnaftate antifungal powder 1%
  • Triamcinolone cream 1.10%
  • Zinc oxide

Special References

Chronic use of NSAIDs and COX-2 inhibitors:

  • Safe to use in older adults with arthritis and no history of cardiovascular disease.
  • NSAIDs are just as safe as COX-2 inhibitors.

Reference:

  • (European Society of Cardiology. SCOT study quells concerns about NSAID safety [press release]. Aug 31, 2015)

Fish Oil:

  • Does not decrease total mortality, cardiovascular events, or cancer incidence
  • Should not be recommended to decrease dyslipidemia
  • SOR A

Reference:

  • (Clinical Inquiry; AFP Vol 89 No 4 Feb 2014)

Stimulants

Adverse Effects: Stimulants

[2023-12-14 Thu 12:08]

The adverse effects of stimulants include the following:

  • Decreased appetite - possible therapeutic effect in specific users
  • Anxiety
  • Jitteriness
  • Headaches
  • Weight loss
  • Insomnia
  • Psychosis
  • Pruritus
  • Paranoia
  • Sweating
  • Palpitations
  • Shortness of breath
  • Chest pain
  • Hypertension
  • Tachycardia
  • Seizures
  • Arrhythmias
  • EKG abnormalities: inappropriate sinus tachycardia, sinus arrhythmia, prolonged QT, premature ventricular contractions, ventricular tachycardia
  • Cerebrovascular event
  • Sudden cardiac death

Reference:

Stimulant Indications

Medical Indications

  • Attention deficit hyperactivity disorder (ADHD)
  • Narcolepsy
  • Asthma
  • Obesity
  • Nasal and sinus congestion
  • Hypotension due to anesthesia

Reference:

Stimulant MOAs

  • Caffeine
    • Caffeine has a unique mechanism as a stimulant as it works as an inhibitor at the adenosine receptors. Agonism at these receptors induces a sensation of drowsiness, and therefore inhibition at these receptors leads to increased energy levels.
    • Caffeine also increases intraocular pressure in those affected with glaucoma.[3]
  • Amphetamines
    • The general mechanism of action of amphetamines is the induction of catecholamines, specifically norepinephrine and dopamine. These catecholamines lead to increased energy levels, euphoria, increased libido, and higher cognition.[4] This class also includes non-therapeutic agents such as 3,4-methylenedioxymethamphetamine (MDMA, aka ecstasy), methylenedioxypyrovalerone (MDPV), and mephedrone.[5][6][7][5]
  • Methylphenidate
    • This drug blocks the dopamine transporter (DAT) and the norepinephrine transporter (NET), leading to increased dopamine and norepinephrine levels with the inhibition of their reuptake.[8]
  • Ephedrine
    • The primary mechanism of ephedrine is increased norepinephrine activity at the adrenergic receptors. Pseudoephedrine specifically works also as a nasal and sinus decongestant.[9]
  • Cocaine
    • The induction of most of the effects of cocaine is through the blockade of the dopamine transporter protein. This results in increased dopamine levels at the synaptic cleft, and hence the effects of dopamine become amplified.
  • Pseudoephedrine
    • Pseudoephedrine is a drug used as a nasal decongestant and stimulant.[10] It is a sympathomimetic agent that belongs to the amphetamine and phenethylamine drug classes. It appears in a number of over-the-counter formulations, including combinations with guaifenesin, antihistamines, acetaminophen, and dextromethorphan.
  • Khat (Catha edulis)
    • Khat is a flowering plant indigenous to the Arabian Peninsula and the Horn of Africa.[11] It contains a substance called cathinone, and the World Health Organization considers it a potential drug of abuse, although they do not rate it as a serious addiction risk. It is a keto-amphetamine and is banned in the USA.
  • Modafinil
    • This is a CNS-stimulating agent used to treat sleepiness related to obstructive sleep apnea, narcolepsy, and shift-worker disorder. It is a weak dopamine uptake inhibitor, although the precise mechanism for its stimulating effects remains unknown.

Reference:

Topical Medications

Vicks 44

[2023-12-13 Wed 18:04]

From a patient:

Vicks 44 never contained codeine.

Here is an excerpt from a column I found that is interesting, especially the last sentence!

  • Vicks touted the primary ingredient as something called Silentium. But as far as we can tell, what made this stuff so lovely to quaff was the absurdly high amount of alcohol in each serving. Mixed into that liquor-y bath was also an ample dollop of phenylpropanolamine, which meant that vintage Formula 44 was essentially sweet Wild Turkey with a crystal meth chaser.

And silentium apparently was dextromethorphan hydrobromide.

No wonder one felt better!

Vitamins, Minerals, and Supplements

Stats:

  • 23,000 ED visits/yr are result of adverse events related to dietary supplements

Guideline based recommendations:

Who Population Supplement
Am Thyroid Assoc Preg women, planning to be, breastfeeding Iodine 150ug/d
Am Acad Ped Breastfeeding women Iodine 150ug/d
  Breastfed and part breastfed infants Vit D 400IU/d
  Children <1yo and adolescents Vit D 600IU/d
Am Geri Soc Community dwelling adults >65yo Vit D 1000IU/d and Ca++
Endo Soc Adults 50-70yo with 25-OH Vit D <30 Vit D 1500-2000IU/d
Nat Osteopor Found Adults <50yo Vit D 400-800IU/d
  Adults >50yo Vit D 800-1000IU/d
  Women <50yo Ca++ 1000mg/d
  Women >50yo Ca++ 1200mg/d
  Men <70yo Ca++ 1000mg/d
  Men >70yo Ca++ 1200mg/d
WHO Pregnant women Iron 30-60mg/d; folic acid 400ug/d
Am Acad of Fam Phys Adults >50yo and strict vegetarians Vit B12 1mg/d

Other effects:

  • Omega-3 fatty acid supplementation
    • No effect on major adverse cardiac events, all-cause mortality, sudden cardiac death, coronary artery revascularization, or hypertension (SOR: A)

References:

  • AFP Vol 97 No 9 May 2018
  • Consultant Apr 2016

Ashwagandha (Withania somnifera)

  • 600 mg per day for 8 weeks (Lopresti 2019)
    • Sexual health: A 2018 systematic review noted ashwagandha was associated with enhanced sexual behavior in females, as measured by the female sexual function index (FSFI) and female sexual distress index (FSDI), and improved spermatogenesis in males. (Azgomi 2018)
    • Strength training: Ashwagandha supplementation has been associated with increased muscle mass, strength, and testosterone, and reduced muscle damage and fat mass compared to placebo. (Wankhede 2015)
    • Stress and mood: Increased testosterone and reduced cortisol, anxiety, and borderline depression scores were associated with ashwagandha versus placebo. (Lopresti 2019)
    • Sleep: Ashwagandha was found to benefit sleep onset latency, mental alertness, sleep quality, and anxiety versus placebo. (Langade 2021)

Reference:

B complex

  • Variable based on each B vitamin and form
    • Stress and mood: B complex supplementation was found to benefit feelings of stress in healthy populations and populations "at-risk" for low mood and anxiety. (Young 2019)
    • Cognitive health: B Vitamins have been shown to reduce homocysteine, and in those with elevated homocysteine, B vitamins improved global cognition, episodic memory, and semantic memory. (de Jager 2012)
    • Pain: Acute low back pain may be improved through B complex supplementation as it reduced treatment duration by 50% in a 2020 meta-analysis when added to diclofenac (an NSAID). (Calderon-Ospina 2020)
    • Hormonal health: B6, in particular, may improve premenstrual symptoms as a meta-analysis found an overall 2.3 fold improvement vs. placebo. (Wyatt 1999)

Reference:

Calcium

Table 43: Recommended Dietary Allowances (RDAs) for Calcium
Age Male Female Pregnant Lactating
0–6 months* 200 mg 200 mg    
7–12 months* 260 mg 260 mg    
1–3 years 700 mg 700 mg    
4–8 years 1,000 mg 1,000 mg    
9–13 years 1,300 mg 1,300 mg    
14–18 years 1,300 mg 1,300 mg 1,300 mg 1,300 mg
19–50 years 1,000 mg 1,000 mg 1,000 mg 1,000 mg
51–70 years 1,000 mg 1,200 mg    
>70+ years 1,200 mg 1,200 mg    

Calcium Carbonate And Calcium Citrate

  • In people with low levels of stomach acid, the solubility rate of calcium carbonate is lower, which could reduce the absorption of calcium from calcium carbonate supplements unless they are taken with a meal.
    • calcium carbonate is 40% calcium by weight
  • Calcium citrate is less dependent on stomach acid for absorption than calcium carbonate, so it can be taken without food
    • calcium citrate is 21% calcium
  • In general, however, absorption of calcium supplements is greater when they are taken with food, regardless of whether the user’s gastric acid is low

Adverse Effects:

  • Adverse Effects:
    • gastrointestinal side effects
    • gas
    • bloating
    • constipation
  • Symptoms can be alleviated by switching to a supplement containing a different form of calcium, taking smaller calcium doses more often during the day, or taking the supplement with meals.
  • Calcium carbonate appears to cause more of these side effects than calcium citrate, especially in older adults who have lower levels of stomach acid.

Reference:

Green tea (Camellia sinensis)

  • 300 mg, total per day, minimum of 14 days; or 1-5 cups per day of brewed green tea (1)(6)(12)
    • Cohort analysis of 313,381 subjects followed for a mean of 17.3 years found that high consumption of green tea (≥ 5 cups/day) decreased all-cause mortality; moderate consumption (3-4 cups per day) decreased respiratory- and cancer-related mortality (1) https://pubmed.ncbi.nlm.nih.gov/31392470/
    • Systematic review and meta-analysis of 39 cohort studies found that for each cup of tea consumed (estimated 338 mg total flavonoids), there was a decreased risk of CVD mortality (4%), CVD events (2%), stroke (4%), and all-cause mortality (1.5%) (6) https://pubmed.ncbi.nlm.nih.gov/32073596/
    • Green tea extract modulated inflammation by improving total antioxidant status, myeloperoxidase and lactoferrin release (12) https://pubmed.ncbi.nlm.nih.gov/26259232/

Reference:

Iron (Fe) Supplementation   edit

[2023-08-22 Tue 15:15]

Table 44: Normal daily recommended intakes in milligrams (mg) for iron
Persons (mg)
Infants birth to 3 years of age 6–10
Children 4 to 6 years of age 10
Children 7 to 10 years of age 10
Adolescent and adult males 10
Adolescent and adult females 10–15
Pregnant females 30
Breast-feeding females 15

Notes:

  • Expressed as an actual amount of iron, which is referred to as "elemental"' iron.
  • The product form [e.g., ferrous fumarate, ferrous gluconate, ferrous sulfate] has a different strength)

Iron-rich foods include:

  • Lean meat and poultry.
  • Seafood such as salmon.
  • White beans, kidney beans, lentils and peas.
  • Nuts and dried fruits.
  • Green leafy vegetables such as spinach.
  • Fortified bread and breakfast cereals.

Special instructions:

  • Although the supplement works best on an empty stomach, you may want to take it with food so it doesn’t upset your stomach.
  • You shouldn't take iron supplements with milk, caffeine, antacids or calcium supplements.
  • Try to take your iron supplement with vitamin C (for example, a glass of orange juice) to increase absorption.

Magnessium

When magnesium doesn’t absorb into the body, it passes into the colon and draws a lot of water along with it. All this extra water in the colon results in diarrhea and the other digestive side effects mentioned above.

Magnesium in the aspartate, citrate, lactate, and chloride forms is absorbed more completely and is more bioavailable than magnesium oxide and magnesium sulfate.

Mg Form Bioavailable (less diarrhea)
aspartate Y
citrate Y
lactate Y
chloride Y
oxide N
sulfate N

The best form of magnesium for highest absorption (ie. won’t cause diarrhea) is non-buffered magnesium bisglycinate.

The "non-buffered" is key. A lot of magnesium bisglyinate (or glycinate) is "buffered", even though many companies won’t specifically tell you this. If magnesium is "buffered" it means that magnesium oxide has been added and mixed in with it. So even though you may see "magnesium bisglycinate" on the front of a label, you won’t know its "buffered" until you dig a little deeper.

The way to tell is you need to look at the ratio of magnesium bisglycinate to the "elemental" magnesium. If the elemental magnesium is only 10% of the magnesium bisglycinate, then it’s non-buffered (aka Pure). If the elemental magnesium is over 10%, then it has been buffered with oxide.

The reason buffering exists in the first place is that it allows for more elemental magnesium to be in each capsule because magnesium oxide is very high in elemental magnesium.

Most magnesium supplements have very low bioavailability. This means they absorb very poorly in the body. Magnesium oxide, the cheapest and most popular magnesium supplement, absorbs at a rate of only about 4%.

Table 45: Recommended Dietary Allowances (RDAs) for Magnesium
Age Male Female Pregnancy Lactation
Birth to 6 months 30 mg* 30 mg*    
7–12 months 75 mg* 75 mg*    
1–3 years 80 mg 80 mg    
4–8 years 130 mg 130 mg    
9–13 years 240 mg 240 mg    
14–18 years 410 mg 360 mg 400 mg 360 mg
19–30 years 400 mg 310 mg 350 mg 310 mg
31–50 years 420 mg 320 mg 360 mg 320 mg
51+ years 420 mg 320 mg    

References:

  • Magnesium   edit
    • 400 mg per day (NIH 2021a; Zhao 2019) for > 8 weeks (Mah 2021)
      • Hypertension: A meta-analysis found that both serum and dietary levels of magnesium were significantly inversely associated with both coronary heart disease and cardiovascular disease overall, with effects seen between 173-457 mg per day in their model (Zhao 2019). Magnesium appears to reduce blood pressure in uncontrolled hypertensive patients at >240 mg per day. (Rosanoff 2021)
      • Headaches: Magnesium has strong evidence for the prevention of migraine headaches as it was found to reduce risk by 62% in a 2020 meta-analysis. (Veronese 2020)
      • Sleep: Sleep latency was found to be significantly reduced by magnesium supplementation in a 2021 meta-analysis where < 1000 mg of elemental magnesium three times per day was recommended. (Mah 2021)
      • Cognitive health: A 2019 meta-analysis of observational studies showed a significant relationship between ADHD and lower serum magnesium. (Effatpanah 2019)

    Reference:

Minerals

13 Essential Minerals

  1. Calcium: Calcium builds strong bones and teeth and helps in muscle contraction, blood clotting, nerve transmission, cell signaling and regulation of metabolism. The deficiency of calcium makes bone fragile and easy to fracture. Milk and dairy products, cashew, dates, broccoli, parsley and greens are good sources of dietary calcium.
  2. Sodium: Sodium helps in muscle contraction, conducts nerve impulses and controls the fluid balance in the body. The primary source of dietary sodium is table salt. However, salt should be taken in moderation.
  3. Potassium: Potassium plays a crucial role in maintaining fluid balance, muscle contraction and nerve impulse conduction. It supports brain health and reduces the risk of stroke. Low potassium causes irregular heartbeats, edema (swelling), brain damage, etc. Bananas, sweet potatoes, avocados, beets and dates are rich sources of potassium.
  4. Chloride: Chloride in association with sodium maintains the normal fluid balance in the body. It is used in the formation of hydrochloric acid (stomach acid) for digestion and to sustain electrical neutrality in the body. Table salt, tomatoes, celery and lettuce are rich sources of chloride.
  5. Magnesium: Magnesium acts as a cofactor in several enzymatic reactions and is required for the synthesis of deoxyribonucleic acid (DNA) and an antioxidant, glutathione. Green leafy vegetables, legumes, nuts, seeds and whole grains replenish dietary magnesium.
  6. Phosphorous: Phosphorus helps build and repair bones and teeth, helps nerves function and makes muscles contract. Phosphorus deficiency leads to bone diseases and growth restriction in children. Meats, poultry, beans, nuts, seeds and dairy products are rich sources of phosphorus.
  7. Iodine: It is the mineral used to produce thyroid hormones. It is necessary for the body’s metabolism and physical and mental development. Phosphorus deficiency leads to impaired growth in children and metabolic disorders such as goiter and mental problems and affects menstrual health and pregnancy-related issues. Iodized table salt is the main source and is easily available.
  8. Iron: It is used in hemoglobin formation, which carries oxygen in the blood. Iron deficiency can lead to cellular hypoxia (decreased oxygen) and cell death. Green leafy vegetables and meats such as beef, chicken and pork are rich sources of iron.
  9. Zinc: This mineral aids in cell division, immunity and wound healing. Low zinc levels impair the immune system. Oysters, red meat, poultry, beans, nuts and whole grains provide major quantities of zinc.
  10. Copper: Copper helps in energy production and facilitates iron uptake from the gut. Chocolate, liver, shellfish and wheat bran cereals are rich sources.
  11. Manganese: Manganese plays an important role in protein, carbohydrate and cholesterol breakdown and cell division. Along with vitamin K, it helps in blood clotting. Whole grains, nuts, soybeans and rice are rich in manganese.
  12. Sulfur: Sulfur has antibacterial properties and helps fight acne-causing bacteria in the skin. It also repairs DNA damage. Seafood and legumes, especially soybeans, black beans and kidney beans are rich sources of sulfur.
  13. Selenium: Selenium helps prevent oxidative damage to the cells. It is also very important for the metabolism of the thyroid hormone. Brazil nuts, seafood and organ meats are good sources of selenium.

Reference:

Omega-3

  • 2-4 g EPA+DHA daily for a minimum of 3 months (Abdelhamid, 2020; Elagizi, 2021; Madison, 2021; Wolters 2021)
    • Cardiovascular disease and all-cause mortality: 2020 Cochrane review of 86 RCTs (n=162,796) concluded EPA+DHA reduced coronary heart disease mortality (10%), but not overall risk of CVD (primary or secondary), or all-cause mortality, noting that high intake of EPA+DHA vs low decreased triglycerides by 15%. (Abdelhamid 2020)
    • Longevity and aging: 1.25-2.5 g/day of omega-3 (n-3) supplements were given to 138 individuals for 4 months and were found to be associated with improved markers of aging, including reduced levels of telomerase (24%), cortisol (33%), IL-6 (33%), and IL-10 (26%), with a note that 2.5 g/day produced superior results to 1.25 g/day. (Madison, 2021)
    • Cognitive decline: In two separate systematic reviews, n-3 supplementation was associated with improvements in episodic memory (immediate recall) (Yurko-Mauro, 2015), as well as improvements in global cognition, visual memory, and executive functioning. (Masana 2017)
    • Mood: A 2021 meta-analysis found n-3 supplementation to benefit depressive symptoms regardless of severity; subgroup analyses identified possible additional benefits with lower severity (no, or mild-moderate depression), and with longer treatment duration (>12 weeks). (Wolters 2021)
    • Omega-3 PUFAs in middle to late aged adults decreased inflammation as demonstrated by reductions in IL-1β, TNF-α, and IL-6 (16) https://pubmed.ncbi.nlm.nih.gov/29735019/
    • Improved inflammation, immune cell aging, and decreased oxidative stress by 15% in healthy sedentary overweight middle-aged and older adults; Additionally telomere lengths were found to increase when omega 6 to omega-3 ratios decreased (11) https://pubmed.ncbi.nlm.nih.gov/23010452/
    • Meta-analysis of 13 RCTs found marine-sourced omega-3 supplementation was associated with decreased risk of myocardial infarction, coronary heart disease, cardiovascular disease, and related mortality, in a dose-dependent fashion (10) https://pubmed.ncbi.nlm.nih.gov/31567003/

Reference:

On Supplements

Instead of unnecessarily taking vitamins, increase the proportion of plant foods in your diet, where required vitamins and minerals are found.

Vitamin supplements are not entirely benign!

People with vitamin deficiencies do need to supplement, but do not take vitamins to prevent chronic disease.

Here is a short summary of what the current medical scientific evidence demonstrates:

Beneficial effects: - Folic acid positively affects total cardiovascular disease - Folic acid and B-vitamins positively affect stroke

Harmful effects: - Vitamin B3 (or niacin) might increase all-cause mortality - Antioxidant mixtures did not appear to benefit cardiovascular disease but might increase all-cause mortality. - Beta-carotene (vitamin A) has been linked to cancer in smokers - Vitamin E has been linked to prostate cancer

Mixed effects: - Vitamin D: uncertain if there is an all-cause mortality effect - Further studies on multivitamins (most commonly used supplement) are needed because of the marginal benefit seen in this study

http://www.onlinejacc.org/content/71/22/2570

Vitamin B12 deficiency

Causes of B12 deficiency:

  • Dietary Deficiency
    • strict vegan diet, malnutrition, reduced intake of animal products
  • Decreased Intrinsic Factor Production
    • pernicious anemia, gastrectomy, atrophic gastritis, H. pylori
  • Decreased ileal B12 absorption
    • crohn's disease, celiac disease, tuberculosis of intestine, ileal resection
  • Competition for B12 in gut
    • alcoholism, bacterial overgrowth, parasites – giardiasis/fish tapeworm
  • Increased B12 requirements
    • hemolysis, HIV infection
  • Medications
    • metformin, colchicine, cholestyramine, slow-release KCL
  • Inherited/Autoimmune diseases
    • Imerslund-Grasbeck syndrome (intrinsic factor receptor defect), pernicious anemia, transcobalamin deficiency, cobalamin mutation (C-G-1 gene), cbID inborn error of cobalamin metabolism
  • Other
    • pancreatic insufficiency, Zollinger-Ellison syndrome, Nitrous Oxide abuse

Supplementation daily dose:

Table 46: Recommended Dietary Allowances (RDAs) for Vitamin B12 [1] Age Male Female Pregnancy Lactation
Birth to 6 months* 0.4 mcg 0.4 mcg    
7–12 months* 0.5 mcg 0.5 mcg    
1–3 years 0.9 mcg 0.9 mcg    
4–8 years 1.2 mcg 1.2 mcg    
9–13 years 1.8 mcg 1.8 mcg    
14–18 years 2.4 mcg 2.4 mcg 2.6 mcg 2.8 mcg
19+ years 2.4 mcg 2.4 mcg 2.6 mcg 2.8 mcg

Reference:

Vitamin C for preventing and treating the common cold

[2023-03-07 Tue 10:04]

Regular ingestion of vitamin C had no effect on common cold incidence in the ordinary population, based on 29 trial comparisons involving 11,306 participants.

However, regular supplementation had a modest but consistent effect in reducing the duration of common cold symptoms, which is based on 31 study comparisons with 9745 common cold episodes.

In five trials with 598 participants exposed to short periods of extreme physical stress (including marathon runners and skiers) vitamin C halved the common cold risk. The published trials have not reported adverse effects of vitamin C.

Trials of high doses of vitamin C administered therapeutically, starting after the onset of symptoms, showed no consistent effect on the duration or severity of common cold symptoms. However, only a few therapeutic trials have been carried out and none have examined children, although the effect of prophylactic vitamin C has been greater in children. One large trial with adults reported benefit from an 8g therapeutic dose at the onset of symptoms, and two therapeutic trials using five-day supplementation reported benefit. More trials are necessary to settle the possible role of therapeutic vitamin C, meaning administration immediately after the onset of symptoms.

Authors' conclusions:

  • The failure of vitamin C supplementation to reduce the incidence of colds in the general population indicates that routine vitamin C supplementation is not justified, yet vitamin C may be useful for people exposed to brief periods of severe physical exercise.
  • Regular supplementation trials have shown that vitamin C reduces the duration of colds, but this was not replicated in the few therapeutic trials that have been carried out.
  • Nevertheless, given the consistent effect of vitamin C on the duration and severity of colds in the regular supplementation studies, and the low cost and safety, it may be worthwhile for common cold patients to test on an individual basis whether therapeutic vitamin C is beneficial for them.

Reference:

  • Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database of Systematic Reviews 2013, Issue 1. Art. No.: CD000980. DOI: 10.1002/14651858.CD000980.pub4

Vitamin D

Conditions and Patient Oriented Effects of Vitamin D Supplementation

  • Adverse pregnancy outcomes:
    • Possible increase in birth weight, no other definitive maternal or neonatal benefits; prenatal vitamins include recommended amounts of vitamin D
  • Asthma:
    • Does not improve control of asthma or enhancement of corticosteroid responsiveness
  • COPD Exacerbation:
    • No therapeutic effect overall; Possible benefit from small trials in those deficient in Vit D
  • Depression:
    • No therapeutic effect
  • Diabetes mellitus:
    • Does not prevent or help treat glucose intolerance
  • Fatigue:
    • Does not increase energy in postmenopausal women or in patients with chronic fatigue syndrome
  • Heart failure:
    • Small increase in ejection fraction, no increase in walking distance
  • Hypertension:
    • Does not lower blood pressure or prevent hypertension
  • Menopausal symptoms:
    • No therapeutic effect in Women's Health Initiative study
  • Nonspecific musculoskeletal pain:
    • Does not decrease symptoms
  • Osteoarthritis:
    • No improvement in pain or cartilage loss
  • Upper respiratory infection:
    • No effect on incidence of infection

References:

  • AFP Vol 97 No 4 Feb 2018
  • Vitamin D Supplementation   edit
    • 800-3000 IU per day for ~6 months (Gao 2017; Jolliffe 2021; NIH 2021)
    • Upper limit (UL) of vitamin D is 4,000 IU per day (NIH 2021)
      • All-cause mortality: A 2017 systematic review of meta-analyses (MAs) on vitamin D found that 8 of 12 MAs showed a significant correlation between vitamin D and reduced all-cause mortality; (Rejnmark 2017) the most recent MA on D3 found a risk reduction of 11%. (Chowdhury 2014)
      • Immune health: A 2021 MA of 46 randomized controlled trials (n=75,541) found that 400-1,000 IU/day of vitamin D safely reduced acute respiratory infection (ARI) risk by 8% (Jolliffe 2021); vitamin D may also play a role in autoimmune health. (Antico 2012)
      • Musculoskeletal health: With regards to aging and arthritis, a 2017 MA found doses of vitamin D over 2000 IU to improve pain and function scores in knee osteoarthritis. (Gao 2017)
      • Mood: A 2019 meta-analysis found an association between vitamin D and moderate effect size improvements in symptoms of major depression. (Vellekkatt 2019)
      • Systematic review and meta-analysis of 52 trials found a decrease in all-cause mortality with vitamin D3 supplementation and a decrease of 16% for risk of cancer death (20) https://pubmed.ncbi.nlm.nih.gov/31405892/
      • Meta-analysis of 159 trials found vitamin D3 to decrease mortality in independently living and institutionalized care elderly (3) https://pubmed.ncbi.nlm.nih.gov/24414552/
      • Systematic review and meta-analysis of 73 cohort studies and 22 randomized controlled trials found an inverse association of vitamin D levels with risk of cardiovascular disease, cancer, and all-cause mortality; supplementation decreased overall mortality in older adults (5) https://pubmed.ncbi.nlm.nih.gov/24690623/
      • Meta-analysis of 42 randomized controlled trials found a decrease in all-cause mortality when supplemented long term (3 years or more) (21) https://pubmed.ncbi.nlm.nih.gov/24349197/

    Reference:

  • Vitamin D dosing & Falls in elderly

    What is known:

    • Vitamin D deficiency linked to decrease muscle mass and increased falls/fractures.
    • Vitamin D synthesis in skin decreases with age.
    • Vitamin D with calcium widely acknowledged to reduce risk of falls in elderly

    Daily dosing guidelines

    • American Geriatric Society and Institute of Medicine Guidelines recommend supplement (1000IU or higher) to achieve daily total of 4000 IU daily of Vitamin D in elderly patients with recent fall history.
    • Some critics argue the 4000IU dose may be too high and recommend 800-2000 IU/day.

    References:

  • Vitamin D   edit

    Effects of Vitamin D Supplementation on Medical Conditions Conditions Patient-oriented effects

    Adverse pregnancy outcomes28–30

    Possible increase in birth weight, no other definitive maternal or neonatal benefits; prenatal vitamins include recommended amounts of vitamin D

    Asthma31–33

    Does not improve control of asthma or enhancement of corticosteroid responsiveness

    Chronic obstructive pulmonary disease exacerbation34–36

    No therapeutic effect overall; two trials showed benefit in a subgroup of patients deficient in vitamin D

    Depression37–41

    No therapeutic effect

    Diabetes mellitus42–45

    Does not prevent or help treat glucose intolerance

    Fatigue27,46–48

    Does not increase energy in postmenopausal women or patients with chronic fatigue syndrome

    Heart failure49,50

    Small increase in ejection fraction, no increase in walking distance

    Hypertension51,52

    Does not lower blood pressure or prevent hypertension

    Menopausal symptoms27,46,47

    No therapeutic effect in Women's Health Initiative study

    Nonspecific musculoskeletal pain53–55

    Does not decrease symptoms

    Osteoarthritis56,57

    No improvement in pain or cartilage loss

    Upper respiratory tract infection58–60

    No effect on incidence of infection

    https://www.aafp.org/afp/2018/0215/p254.html

Folic Acid Supplementation Lowers Suicide Events

Association Between Folic Acid Prescription Fills and Suicide Attempts and Intentional Self-harm Among Privately Insured US Adults

Cohort study

  • Included 866,586 adults
  • Folic acid treatment was associated with a significantly reduced rate of suicidal events
  • This large-scale observational study confirmed results of an earlier signal-generation study.

Results Data on 866 586 patients were collected; 704 514 (81.30%) were female, and 90 296 (10.42%) were 60 years and older. Overall, there were 261 suicidal events during months covered by a folic acid prescription (5 521 597 person-months) for a rate of 4.73 per 100 000 person-months, compared with 895 suicidal events during months without folic acid (8 432 340) for a rate of 10.61 per 100 000 person-months.

Hazard ratio (HR) for folic acid for suicide events was 0.56 (95% CI, 0.48-0.65)

  • With similar results for the:
    • modal dosage of 1 mg of folic acid per day (HR, 0.57; 95% CI, 0.48-0.69)
    • women of childbearing age (HR, 0.60; 95% CI, 0.50-0.73)
  • A duration-response analysis (1 mg dosage) revealed a 5% decrease in suicidal events per month of additional treatment (HR, 0.95; 95% CI, 0.93-0.97)

The same analysis for the negative control, cyanocobalamin, found no association with suicide attempt (HR, 1.01; 95% CI, 0.80-1.27).

Reference:

  • Gibbons RD, Hur K, Lavigne JE, Mann JJ. Association Between Folic Acid Prescription Fills and Suicide Attempts and Intentional Self-harm Among Privately Insured US Adults. JAMA Psychiatry. Published online September 28, 2022. https://doi.org/10.1001/jamapsychiatry.2022.2990

Ketamine for Depression

Ketamine has demonstrated efficacy in the treatment of depression, particularly in cases of treatment-resistant depression. Clinical studies have shown that a single intravenous infusion of ketamine at subanesthetic doses (typically 0.5 mg/kg) can produce rapid and significant antidepressant effects within hours, with peak effects observed around 24 hours post-administration. These effects can last from several days to a week.

Repeated administration of ketamine has been shown to sustain its antidepressant effects. For instance, serial dosing at intervals of 2-4 days can maintain benefits for weeks to months. Intranasal esketamine, an enantiomer of ketamine, has also been approved for use in treatment-resistant depression and has shown similar rapid antidepressant effects.

The antidepressant mechanism of ketamine is thought to involve N-methyl-D-aspartate (NMDA) receptor antagonism, leading to enhanced neuroplasticity in cortico-limbic areas of the brain. Additionally, ketamine's effects on other receptors, such as AMPA receptors and opioid receptors, may contribute to its antidepressant properties.

While ketamine is generally well-tolerated, it can cause transient dissociative and psychotomimetic effects, as well as transient increases in heart rate and blood pressure. These side effects are usually mild and transient.

In summary, ketamine is an effective and rapid-acting treatment for depression, particularly in treatment-resistant cases, with both intravenous and intranasal routes showing efficacy. Further research is needed to optimize dosing regimens and long-term safety profiles.

Reference:

Continuous Glucose Monitoring (CGM)

[2024-06-27 Thu 13:40]

ICD10: E11.65 - Type 2 diabetes mellitus with hyperglycemia

  • G7
    • Dexcom G7 Transmitter
      • 3 each for 90 days. Use as directed
    • Dexcom G7 Sensor Continuous Blood Glucose Monitor
      • 9 each for 90 days. Use as directed
  • G6
    • Dexcom G6 CGM Sensors
      • 9 each for 90 days. Use as directed. DM2 - Insulin
    • Dexcom G6 CGM Transmitter
      • 3 each for 90 days. Use with Dexcom sensors. DM2 - Insulin

Study: Health and cancer risks associated with low levels of alcohol consumption

[2024-07-08 Mon 11:54]

BLUF:

  • Alcohol causes 7 types of cancers:
    1. Breast cancers
    2. Colon and rectum
    3. Esophagus
    4. Liver
    5. Mouth
    6. Pharynx
    7. Larynx
  • Light to moderate consumption accounts for 13.3% of all alcohol attributable cancers
    • Half of these cancers are female breast cancer

The overall risks and harms resulting from alcohol consumption have been systematically assessed and are well documented. According to the latest WHO estimates, alcohol consumption contributed to 3 million deaths in 2016 globally and was responsible for 5.1% of the global burden of disease and injury. Alcohol consumption is associated with an increased risk of many health conditions and is the main and sufficient cause for several disorders, including alcohol dependence, liver cirrhosis, and several other non-communicable diseases and mental health conditions. Alcohol use is among the leading risk factors for premature mortality and disability because of its causal relationship with multiple health conditions, which also include non-intentional injuries and suicides. Younger people are disproportionately affected by alcohol compared with older people, and 13.5% of all deaths among those aged 20–39 years are attributed to alcohol. Disadvantaged and vulnerable populations have increased rates of alcohol-related death and hospitalisation.

Alcohol, as classified by the International Agency for Research on Cancer, is a toxic, psychoactive, and dependence-producing substance and a Group 1 carcinogen that is causally linked to seven types of cancer, including oesophagus, liver, colorectal, and breast cancers. Alcohol consumption is associated with 740,000 new cancer cases each year globally.

In the EU, light to moderate alcohol consumption (<20 g of pure alcohol per day, which is equivalent to consumption of approximately <1.5 L of wine [12% alcohol by volume; ABV], <3.5 L of beer [5% ABV], or <450 mL of spirits [40% ABV] per week) was associated with almost 23,000 new cancer cases in 2017, accounting for 13.3% of all alcohol-attributable cancers and for 2.3% of all cases of the seven alcohol-related cancer types. Almost half of these cancers (approximately 11,000 cases) were female breast cancers. Also, more than a third of the cancer cases attributed to light to moderate drinking (approximately 8,500 cases) were associated with a light drinking level (<10 g per day).

Increasing levels of alcohol use are associated with increasing levels of risk of illness and mortality, leading to the question of whether a safe level of alcohol consumption that is associated with zero risk of health consequences can be defined. To identify a safe level of alcohol consumption, scientific evidence is required to show the absence of increased risk of illness or injury associated with alcohol consumption at and below that level. Some, but not all, studies have suggested that light alcohol consumption could have a small protective effect, as measured by the risk of some cardiovascular diseases or type 2 diabetes. Some studies show the existence of such effects on certain types of cardiovascular diseases in middle-aged and older people. However, several reviews also found that the protective effects of moderate consumption disappear with heavy episodic drinking, which increases the risk of any cardiovascular diseases.

No studies have shown that the potential existence of a protective effect for cardiovascular diseases or type 2 diabetes also reduces the risk of cancer for an individual consumer. Evidence does not indicate the existence of a particular threshold at which the carcinogenic effects of alcohol start to manifest in the human body. As such, no safe amount of alcohol consumption for cancers and health can be established. Alcohol consumers should be objectively informed about the risks of cancer and other health conditions associated with alcohol consumption.

Reference:

  • Anderson BO, Berdzuli N, Ilbawi A, Kestel D, Kluge HP, Krech R, Mikkelsen B, Neufeld M, Poznyak V, Rekve D, Slama S, Tello J, Ferreira-Borges C. Health and cancer risks associated with low levels of alcohol consumption. Lancet Public Health. 2023 Jan;8(1):e6-e7. doi: 10.1016/S2468-2667(22)00317-6. PMID: 36603913; PMCID: PMC9831798.

Study: Association Between Daily Alcohol Intake and Risk of All-Cause Mortality   edit

[2024-07-08 Mon 10:46]

Key Points

  • What is the association between mean daily alcohol intake and all-cause mortality?
  • Findings
    • This systematic review and meta-analysis of 107 cohort studies involving more than 4.8 million participants found
      • no significant reductions in risk of all-cause mortality for drinkers who drank less than 25 g of ethanol per day (about 2 Canadian standard drinks compared with lifetime nondrinkers) after adjustment for key study characteristics such as median age and sex of study cohorts.
      • There was a significantly increased risk of all-cause mortality among female drinkers who drank 25 or more grams per day and among male drinkers who drank 45 or more grams per day.
  • Meaning
    • Low-volume alcohol drinking was not associated with protection against death from all causes.

Abstract

Importance

  • A previous meta-analysis of the association between alcohol use and all-cause mortality found no statistically significant reductions in mortality risk at low levels of consumption compared with lifetime nondrinkers. However, the risk estimates may have been affected by the number and quality of studies then available, especially those for women and younger cohorts.

Objective

  • To investigate the association between alcohol use and all-cause mortality, and how sources of bias may change results.
  • Data Sources

A systematic search of PubMed and Web of Science was performed to identify studies published between January 1980 and July 2021.

Study Selection

  • Cohort studies were identified by systematic review to facilitate comparisons of studies with and without some degree of controls for biases affecting distinctions between abstainers and drinkers. The review identified 107 studies of alcohol use and all-cause mortality published from 1980 to July 2021.

Data Extraction and Synthesis

  • Mixed linear regression models were used to model relative risks, first pooled for all studies and then stratified by cohort median age (<56 vs ≥56 years) and sex (male vs female). Data were analyzed from September 2021 to August 2022.

Main Outcomes and Measures

  • Relative risk estimates for the association between mean daily alcohol intake and all-cause mortality.

Results

  • There were 724 risk estimates of all-cause mortality due to alcohol intake from the 107 cohort studies (4,838,825 participants and 425,564 deaths available) for the analysis.
  • In models adjusting for potential confounding effects of sampling variation, former drinker bias, and other prespecified study-level quality criteria, the meta-analysis of all 107 included studies found no significantly reduced risk of all-cause mortality among occasional (>0 to <1.3 g of ethanol per day; relative risk [RR], 0.96; 95% CI, 0.86-1.06; P = .41) or low-volume drinkers (1.3-24.0 g per day; RR, 0.93; P = .07) compared with lifetime nondrinkers.
  • In the fully adjusted model, there was a nonsignificantly increased risk of all-cause mortality among drinkers who drank 25 to 44 g per day (RR, 1.05; P = .28) and significantly increased risk for drinkers who drank 45 to 64 and 65 or more grams per day (RR, 1.19 and 1.35; P < .001).
  • There were significantly larger risks of mortality among female drinkers compared with female lifetime nondrinkers (RR, 1.22; P = .03).

Conclusions and Relevance

  • In this updated systematic review and meta-analysis, daily low or moderate alcohol intake was not significantly associated with all-cause mortality risk, while increased risk was evident at higher consumption levels, starting at lower levels for women than men.

Reference:

Endocrine

Cushings

Table 47: Clinical features of Cushing syndrome
Feature Proportion
Obesity or weight gain 95%
Facial plethora 90%
Rounded face 90%
Decreased libido 90%
Thin skin 85%
Decreased linear growth 70–80%
Menstrual irregularity 80%
Hypertension 75%
Hirsutism 75%
Depression or emotional lability 70%
Bruising easily 65%
Glucose intolerance 60%
Weakness 60%
Osteopenia or fracture 50%
Nephrolithiasis 50%

We recommend testing for Cushing's syndrome in the following groups:

  • Patients with unusual features for age (e.g. osteoporosis, hypertension)
  • Patients with multiple and progressive features, particularly those that are more predictive of Cushing's syndrome
  • Children with decreasing height percentile and increasing weight
  • Patients with adrenal incidentaloma compatible with adenoma

Screening tests for endogenous Cushing syndrome

  • After an exogenous cause has been excluded, diagnostic tests are used to determine if hypercortisolism is indeed present.
  • Testing at least twice for cortisol levels in urine and saliva is recommended.
  • Abnormal test results should prompt referral to an endocrinologist for an assessment of the likelihood of Cushing syndrome.

For the initial testing for Cushing's syndrome, we recommend one of the following tests based on its suitability for a given patient:

  • 24-H Urine free cortisol (UFC; at least 2 measurements)
  • Late-night salivary cortisol (2 measurements)
    • Most clinicians using the late-night salivary cortisol test ask patients to collect a saliva sample on two separate evenings between 2300 and 2400 h.
    • Saliva is collected either by passive drooling into a plastic tube or by placing a cotton pledget (salivette) in the mouth and chewing for 1–2 min.
    • The sample is stable at room or refrigerator temperature for several weeks and can be mailed to a reference laboratory.
  • 1-mg overnight dexamethasone suppression test (DST)
  • Longer low-dose DST (2 mg/d for 48 h)
Table 48: Causes Of Physiological Hypercorisolism
Cause Prev
Depression 2-4%
Alcohol dependence 4.9%
Glucocorticoid resistance Unclera - likely seldom
Obesity 5-12%
Diabetes 6.4%
Pregnancy 0.5-1.5% of femal pop
Prolonged physical exertion Unclear
Malnutrition <40% in hosp pop
Corisol binding globulin excess Unclear
Table 49: Causes of exogenous Cushing syndrome
Route of administration of steroids Examples of steroids
Oral Prednisone, dexamethasone, methylprednisolone, megestrol acetate,1 supplements containing betamethasone,2 some Chinese herbs (especially those with anti-inflammatory properties)3
Inhalation* Fluticasone when used with protease inhibitors in the treatment of HIV;4 budesonide used with itraconazole in patients with cystic fibrosis5
Topical† Skin lightening cosmetic creams,6 ointments, clobetasol7
Ocular Glucocorticoid-containing eye drops8
Intradermal or intra-articular injection§ Triamcinolone9,10
Nasal§ Betamethasone11
Rectal Betamethasone12
Nerve block injection Methylprednisone13
Table 50: Tests Used To Screen For Hypercortisolism
Test Quest Code Result suggestive of Cushing syndrome Principle of test Remarks
24-hour urinary excretion of cortisol 14534 ($166.08) Cortisol level is above upper limit of normal range Confirms that cortisol secretion is elevated Sensitivity to test is reduced if creatinine clearance < 60 mL/min per 1.73 m2
Overnight suppression of dexamethasone 1 mg   Cortisol level > 50 nmol/L at 8:00–9:00 am Shows loss of normal sensitivity to negative feedback Not accurate when cortisol-binding globulin is altered (e.g., by use of birth control pill)
Level of cortisol in saliva 93020 ($205.97) Late-night cortisol level > 4 nmol/L Shows loss of normal diurnal rhythm of cortisol Test is not available at all laboratories
Table 51: Hyperadrenalism
Pathology Hormone Levels in the Body Responsible Organ
Primary ↑↑Cortisol, ↓↓ACTH, ↓↓CRH Adrenal Gland
Secondary (Cushing's Disease) ↑↑Cortisol, ↑↑ACTH, ↓↓CRH Pituitary Gland
Tertiary ↑↑Cortisol, ↑↑ACTH, ↑↑CRH Hypothalamus

References:

Diabetes

Table 52: Diabetes Types
  Fred Wilma Barney
Fasting insulin or c-peptide Increased Decreased N/Slight inc
Fasting Glucose 184 230 253
Primary Defect Resistance Production Both
Diabetes Type 2 Type 1 Type 2 -> Both

C-peptide indicates how much insulin the body is producing

Lifestyle:

  • Lifestyle reduced incidence of DM II by 58% over 3 years in Diabetes Prevention Program (DPP)
    • At least a 7% weight loss in 6 months
    • 150 minutes of brisk walking per week
  • Individualized diet
    • Quality fats over quantity; more whole grains; nuts

Diabetes Management Plan:

  • A1c > 10: Basal insulin + metformin
  • A1c within 1.5 of goal: Metformin
  • A1c > 1.5 above goal: Metformin + 1 other
  • A1c above goal after 3 mo: Metformin + 1 other

ADA Guideline Notes for DM II:

  • If ASCVD, HF, or CKD:
    • Start with SGLT2 or GLP-1
    • If not controlled after 3 mo: Both
Table 53: True Costs of the new ADA guidelines
  ASCVD HF CKD GoodRx / Price
liraglutide NNT 53 in 3.8 years   NNT 67 in 3.8 yrs 960 / $2.3 million in 3.8 years
semaglutide NNT 91 in 2 years   NNT 44 in 2 yrs 908 / $1.9 million in 2 years
dulaglutide NNT 71 in 5.4 years   NNT 42 in 5.4 yrs 852 / $3.9 million in 5.4 years
empagliflozin NNT 62 in 3 years NNT 71 in 3 years NNT 20 in 3 years 546 / $1.2 million in 3 years
Canagliflozin NNT 179 in 3 years NNT 14 In 5 years NNT 60 in 1.5 years 620 / $4.0 million in 3 years

THIS IS EXPENSIVE!

GLP-1

  • Weight loss! NNT = 2

Reference:

  • FAFP Spring 2024 - Dr Koo

Diabetes self-management and support (DSME/S)

DSME/S improves diabetes outcomes, including:

  • lowering hemoglobin A1c levels;
  • reducing onset and/or advancement of diabetes complications;
  • helping people improve their lifestyle behaviors;
  • decreasing diabetes distress and depression;
  • improving quality of life.

4 critical times for assessing the need for DSME/S referral:

  1. with a new diagnosis of type 2 diabetes;
  2. annually for health maintenance and prevention of complications;
  3. when new complicating factors influence self-management;
  4. when transitions in care occur.

Reference:

  • Diabetes Care,The Diabetes Educator, and the Journal of the Academy of Nutrition and Dietetics.

DKA ad HHS Management

DKA:

  • Blood glucose >250 mg/dL
  • Arterial pH <7.3
  • Bicarbonate level 15 mEq/L
  • Moderate ketonuria or ketonemia

IV Fluids:

  • Determine hydration status
    • Severe: NS at 1L/hr
    • Cardiogenic shock: Hemodynamic monitoring/pressors
    • Mild: Evaluate corrected sodium level
      • Normal/High
        • 0.45% saline - 250 to 500 mL/hr depending on hydration status
      • Low
        • NS - 250 to 500 mL/hr depending on hydration status
      • When serum glucose reaches 200 mg/dL (DKA) or 300 mg/dL (HHS), switch to 5% dextrose with 0.45% saline at 150 to 250 mL/hr

Potassium:

  • Establish adequate renal function (50mL/h Urinary Output)
  • Potassium level:
    • <3.3 mEq/L
      • Hold insulin and give 20-30 mEq potassium per hour until level >3.3 mEq/L
    • 3.3-5.2 mEq/L
      • Give 20-30 mEq potassium/L of IVF to keep serum potassium between 4 and 5 mEq/L
    • >5.2 mEq/L
      • Do not give potassium
      • Check every 2 hours

Regular insulin:

  • Give IV
    • 0.1u regular insulin/Kg as IV bolus
    • 0.1u regular insulin/Kg/Hr as continuous IV infusion
    • If serum glucose level does not decrease by 10% in first hour, give 0.14u regular insulin/Kg as IV bolus then continue previous
    • HHS:
      • When serum glucose reaches 300 mg/dL
        • Reduce IV regular insulin to 0.02-0.05u/Kg/hr
        • Keep serum glucose level at 200-300 mg/dL until patient is alert
    • DKA:
      • When serum glucose reaches 200 mg/dL
        • Reduce IV regular insulin to 0.02-0.05u/Kg/hr OR give rapid-acting insulin at 0.1u/Kg every 2 hours
        • Keep serum glucose at 150-200 mg/dL until DKA resolves

Bicarbonate:

  • pH > 6.9
    • No bicarbonate
  • pH < 6.9
    • 100 mmol bicarbonate in 400 mL water + 20 mWq potassium chloride
      • Infuse over 2 hours
    • Repeat every 2 hours until pH > 7
    • Monitor potassium every 2 hours

DKA/HHS

  • Check venous pH and electrolyte, BUN, creatinine, and glucose every 2-4 hours until stable
  • When DKA or HHS resolves and patient is able to eat - initiate subcutaneous insulin
  • Continue IV infusion 1-2 hours after beginning subcutaneous insulin
  • In insulin naive patients - start 0.5-0.8u/Kg/day then adjust as needed

Calculations:

  • Corrected serum sodium
    • sodium + (1.65*glucose-100)/100
  • Effective serum osmolarity (HHS > 320)
    • (2*corrected sodium)+(Glucose/18)

References:

  • AFP Vol 96 No 11 Dec 2017

DM visit EBM

  • A: A1c - q3 - 6 mo
  • B: BP - <130/80
  • C: Chol - LDL <100 annual
  • D: MDRD: GFR q6 mo
  • E: Eye exam - on Dx and annual
  • F: Foot - visual - annual

References:

  • Kopes-Kerr C. Type 2 Diabetes: Separating Proven from Unproven Interventions. Am Fam Phys. Vol 80, No 5. 1 Sep 2009. pp450-452

General Notes

  • DM is 7th leading cause of death in US.
  • 1 in 4 persons with DM are unaware they have the disease.
  • If a cohort of obese persons have prediabetes and reduce their weight by 5% - the incidence of newly diagnosed diabetes in 3 years decreases from 23% to 11%.
  • Metformin, acarbose, and a combination ramiril/rosglitazone can be effective in preventing progression from prediabetes to DM.

From: Shaughnessy AF1, Erlich DR1, Slawson DC2. Type 2 Diabetes: Updated Evidence Requires Updated Decision Making. Am Fam Physician. 2015 Jul 1;92(1):22.

  • A1C levels should be low enough to decrease symptoms but not low enough to risk hypoglycemia. For many patients, this range is 8% to 9% with a fasting blood glucose level less than 200 mg per dL (11.1 mmol per L).
  • The goal of treating type 2 diabetes is to help patients live longer, healthier, productive lives. …Other than metformin, which has been shown to decrease mortality independent of its effect on glucose levels, all other available diabetes medications treat numbers, not patients.
  • For type 2 diabetes, this means abandoning tight control of blood glucose for most patients, and instead addressing risks such as smoking, hypertension, and hyperlipidemia that will actually make a difference.

(Erlich DR, et al. "Lending a hand" to patients with type 2 diabetes: a simple way to communicate treatment goals. Am Fam Physician. 2014;89(4):256,258.)

  • Normalizing blood glucose levels benefits only a small subset of patients.

(George CM, et al. Management of blood glucose with noninsulin therapies in type 2 diabetes. Am Fam Physician. 2015;92(1):27–34.)

  • …weekly self-weighing, regular consumption of breakfast, and reduced intake of fast food were associated with a lower body mass index in overweight patients.

(Raynor HA, Jeffery RW, Ruggiero AM, Clark JM, Delahanty LM; Look AHEAD Research Group. Weight loss strategies associated with BMI in overweight adults with type 2 diabetes at entry into the Look AHEAD (Action for Health in Diabetes) trial. Diabetes Care. 2008;31(7):1299–1304.)

  • …medical nutrition therapy decreases A1C level, weight, waist circumference, and triglyceride level, and increases health-related quality of life.

(Evert AB, Boucher JL, Cypress M, et al.; American Diabetes Association. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2013;36(11):3821–3842.)

  • The ADA recommends starting therapy with metformin, because it is the only medication shown to reduce mortality and complications in randomized controlled trials (RCTs).

(Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group [published correction appears in Lancet. 1998;352(9139):1558]. Lancet. 1998;352(9131):854–865.)

  • No evidence from RCTs that any of the other DM medications reduce the risk of diabetes-related complications, cardiovascular mortality, or all-cause mortality.

(American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care. 2014;37(suppl 1):S14–S80.)

References:

  • Vijan S. In the clinic. Type 2 diabetes. Ann Intern Med. 2015; 162(5):ITC1-16.
  • Consultant. 2015;55(7):565
  • George CM, Brujin LL, Will K, Howard-Thompson A. Management of Blood Glucose with Noninsulin Therapies in Type 2 Diabetes. Am Fam Physician. 2015 Jul 1;92(1):27-34.

HbA1C and Estimated Average Glucose Level

HbA1c (%) eAG (mg/dL)
5 97
6 126
7 154
8 183
9 212
10 240
11 269
12 298

Iatrogenic Hypoglycemia

  • Mortality rate associated with hypoglycemia has been estimated as high as 10%.

(Skrivarhuag T, Bangstad HJ, Stene LC, et al. Long-term mortality in a  nationwide cohort of childhood-onset type 1 diabetic patients in Norway. Diabetologica. 2006; 49(2):298-305)

  • After warfarin, insulin was the second most frequent cause of emergency hospitalizations due to adverse drug events in adults over 65.

(Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug events in older Americans. N Engl J Medd. 2011;365(21):2002-2012)

  • Insulin is the most common cause of iatrogenic hypoglycemia. Patients on more complicated regimens have higher rates of hypoglycemia.

(Holman RR, Farmer AJ, Davies MJ, et al. Three-year efficacy of complex insulin regimens in type 2 diabetes. N Engl J Med. 2009;361(18):1736-1747)

  • Sulfonylureas also cause hypoglycemia as they act directly on ATP-sensitive potassium channels on the beta cell membrane -> induces depolarization and insulin release independently of stimulation of physiologic insulin from glucose.

Other noninsulin medications less likely as they:

  • increase peripheral sensitivity to insulin (metformin and thiazolidinediones)
  • enhance pancreatic insulin secretion in response to oral glucose through the incretin pathway (GLP-1 agonists and DPP-4 inhibitors)
  • increasing renal loss of glucose (SGLT2 inhibitors)
  • Renal failure increases risk (both acute and chronic). Kidneys metabolize most sulfonylureas.
    • Glyburide is NOT recommended in renal insufficiency with GFR <50-60ml/min/1.73m2
    • Glipizide tends to be safer in renal insufficiency but also needs dose reductions.

References:

  • Consultant. 2015;55(7):541-542

Insulin

See:

How to start insulin (Dr Koo):

  • Consider starting with long-acting basal insulin like determir (Levemir) or glargine (Lantus)
  • Start with 10 units before bed (or 0.1 to 0.2 units per kg)
  • Increase by 1 units every day if AM fasting glucose > 130
  • Once AM glucose is 130 or lower, maintain same dose insulin for the rest of the month until follow-up appointment

AACE/ACE Approach to Starting Insulin

  • Augmentation therapy with long-acting (basal) insulin
    • A1C < 8%: total daily dosage 0.1 to 0.2 units per kg
    • A1C > 8%: total daily dosage 0.2 to 0.3 units per kg
  • Replacement therapy with basal and rapid-acting prandial (basal-bolus) insulin
    • Add prandial insulin 1 meal at a time*: start at 10% of long-acting dose or 5 units
    • Add prandial insulin before each meal: total daily dosage 0.3 to 0.5 units per kg and divide 50% basal and 50% prandial†

Insulin Approach

  1. Start with Basal Insulin
  2. Can add 1 rapid acting insulin before largest meal OR Change to premixed insulin twice daily
    • Rapid acting insulin
      • Start: 4u or 10% basal dose
      • Adjust by 1-2u weekly until target reached
    • Premixed twice daily
      • Start: divide current basal dose into 2/3 AM and 1/3PM OR into 1/2 AM and 1/2 PM
      • Adjust: Increase by 1-2u weekly until target reached
  3. If not controlled - consider basal with bolus before meals

Lantus/Levemir:

  • Start at 0.1-0.2 unit/Kg
  • Titrate after assesssing mean 3-day FPG (3-0-3 Regimen)
    • If FG is >130 increase 3 units
    • If FG is 80-130 maintain dose
    • If FG is <80 decrease 3 units

Toujeo:

  • Start 0.2units/kg; 1:1 basal; 80% Total NPH dose; 1/3 to 1/2 total daily insulin dose

NovoLog (insulin aspart)

  • Step 1: Inject 4units before percieved largest meal
  • Step 2: Patients measure BS before next meal or bedtime and use this reading to plan next day dose
  • Step 3: Self titrate based on Step 2
    • If less than or equal to 70 -> -1
    • If 71-130 then no change
    • If over 130 -> +1

NovoLog 70/30 (use NPH instead of 70/30)

  • Starting dose:
    • If FG <180 mg/dL -> 5units before breakfast and 5u before dinner
    • If FG is >180 -> 6u before breakfast and 6u before dinner
  • Titration:

    Premeal glu Unit adjust
    <80 -2
    80-110 0
    111-140 +2
    141-180 +4
    >180 +6

Regular insulin:

  • Estimate sensitivity using "rule of 1800"
    • BG change per unit Insulin = 1800/total Insulin daily
    • Example of 60 units/day: 1 unit drops BG 30 mg/dl
  • Protocol (uses rapid acting Insulin, e.g. Lispro)
    • Goal Blood Glucose is <150
    • Using sensitivity, how many units to drop 50 mg/dl
      • For example above, ~1 unit to drop BG 50 mg/dl
        • BG 150-199: 1 unit Bolus Insulin (regular or RA)
        • BG 200-249: 2 units Bolus Insulin
        • BG 250-299: 3 units Bolus Insulin
        • BG 300-349: 4 units Bolus Insulin
        • BG Over 350: 5 units Bolus Insulin
    • Add in coverage for meal intake
      • Based on per carbohydrate when Glucose >60 mg/dl
      • Use for Type I Diabetes, consider for Type II
      • Add to sliding scale coverage above
      • Add 1 unit Insulin per carbohydrate
      • Example: For 3 carbohydrate meal, add 3 units

http://www.fpnotebook.com/endo/pharm/inslnsldngscl.htm

A Good Resource: http://clinical.diabetesjournals.org/content/20/1/11.full


2 Types of Insulin Categories:

Basal insulins:

  • Intermediate-acting insulins
    • Humulin N (NPH)
    • Novolin N (NPH)
  • Long-acting insulins
    • Basaglar (insulin glargine)
    • Lantus (insulin glargine)
    • Levemir (insulin detemir)
    • Semglee (insulin glargine)
    • Toujeo (insulin glargine)
    • Tresiba (insulin degludec)

Premeal insulins:

  • Rapid-acting insulins
    • Admelog® (insulin lispro)
    • Afrezza® (inhaled insulin)
    • Apidra® (insulin glulisine)
    • Fiasp® (insulin aspart)
    • Humalog® (insulin lispro)
    • Lyumjev® (insulin lispro-aabc)
    • Novolog® (insulin aspart)
  • Short-acting insulins
    • Humulin® R (regular)
    • Novolin® R (regular)

Basal Insulin Sliding Scale

Glucose Lev Increase by
<60 -4 units
60-79 -2 units
80-99 Maintain dose
100-119 1 units
120-140 mg/dL 2 units
141-160 mg/dL 4 units
161-180 mg/dL 6 units
>180 mg/dL 8 units

Titration for rapid-acting insulin

Premeal Glucose Adjust
level for 3 days  
<60 mg/dL -4
60-79 mg/dL -2
80-99 mg/dL -1
100-119 mg/dL Maintain dose
120-139 mg/dL 1
140-180 mg/dL 2
>180 mg/dL 3

Titration for premixed insulins

Fasting BG for 3d Adjustment of Pre-dinner BG for 3d Adjustment of
  Pre-Dinner dose   Pre-Breakfast dose
<60 mg/dL -4 <60 mg/dL -4
60-79 mg/dL -2 60-79 mg/dL -2
80-110 mg/dL Maintain Dose 80-110 mg/dL Maintain Dose
111-140 mg/dL 2 111-140 mg/dL 2
141-180 mg/dL 4 141-180 mg/dL 4
>180 mg/dL 6 >180 mg/dL 6

References:

  • AFP Vol 84 No 2 Jul 2011
  • AFP Vol 97 No 1 Jan 2018

Physiologic Insulin Guidelines

  1. Step 1: Measure BG before meals and at bedtime, or q6 if nothing by mouth
  2. Step 2: Calculate initial total daily dose (TDD) of insulin
    • 0.3units/kg if underweight, elderly, or dialysis
    • 0.4units/kg if normal weight
    • 0.5units/kg if overweight
    • 0.6units/kg if obese, glucocorticoids, insulin resistance
  3. Step 3: 50% of TDD as long acting basal insulin
  4. Step 4: 50% of TDD as short acting nutritional insulin given in 3 divided doses 0-15min before meals
  5. Step 5: Select a scale of short-acting correctional insulin given 0-15min before meals
  6. Step 6: Subsequent daily adjustment of TDD base on previous days total units given

Correctional insulin dosing

Blood Glucose Standard Dosing
150-199mg/dL 1
200-249mg/dL 3
250-299mg/dL 5
300-349mg/dL 7
>349mg/dL 8 + call

Types of Insulin

Insulin Onset (h) Duration (h)
Glargine (Lantus) 1-2 24
Detemir (Levemir) 1-2 18-24
Isophane (NPH) 1-2 10-20
Lispro, aspart, glulisine 5-15min 3-6
Regular 1-2 6-10min

References:

  • AFP Vol 81 No 9 May 2010
  • Strategies for low income

    See:

    Low cost DM insulin

    • Novolin at Walmart
    • Relyon at Walmart
    • Start NPH as daily long acting

    Wal-mart Insulin

    • Reli-on brand of Novolin N (NPH) in 10 mL bottles insulin ($24.88)
      • Use NPH nightly similar to lantus or levemir
      • Start with 10u nightly and warn of hypoglycemia symptoms (at 8-10h mark)
      • When NPH is greater than 0.25 units per kg and the post meal blood sugars are above target, consider adding morning NPH and/or premeal regular insulin.
    • Reli-on brand of Novolin R (regular) in 10 mL bottles insulin ($24.88)
      • Use for additional carbs as needed
      • When NPH is greater than 0.25 units per kg and the post meal blood sugars are above target, consider adding morning NPH and/or premeal regular insulin.
      • Can try the 50/50 Rule:
        • Take the patients weight in kgs x 0.5 to calculate total daily insulin needs.
          • 50% is from basal NPH (0.25 units per kg)
          • The other 50% from bolus regular (0.25 units per kg divided into 2 to 3 meals).
    • Reli-on brand of Novolin 70/30 in 10 mL bottles insulin ($24.88)
      • 70/30 twice a day
    • Also:
      • ReliOn insulin syringes ($12.99)
      • Glucose tablets
      • Lancets ($6.24)
  • Type 1 DM Insulin

    ADA general treatment recommendations for T1DM

    • T1DM patients should receive multidose injections (3 - 4 a day) of basal and premeal insulin or insulin pump therapy
    • Most individuals with T1DM should use rapid-acting insulin analogs to reduce hypoglycemia risk
    • Patients should match premeal insulin to carbohydrate intake, premeal blood glucose levels, and anticipated activity

    Starting therapy

    • Insulin dosing in T1DM will vary based on patient's age, weight, and residual pancreatic insulin activity
    • T1DM patients will typically require a total daily insulin dose of 0.4 - 1.0 units/kg/day
    • A typical starting dose in metabolically-stable patients is 0.5 units/kg/day
    • After calculating the total daily dose, it should be given as follows:
      • Basal insulin - given as half of the total daily dose ✝
      • Premeal insulin - half of the total daily dose divided into thirds and given before each meal
      • When first starting therapy, it is recommended that the initial basal dose be reduced by 20 - 30% to prevent hypoglycemia [11,19]
    • T1DM patients may experience a "honeymoon phase" after starting insulin therapy where the initial effects of insulin are greater than what is seen later in the disease

    Example:

    • Patient weighs 80 kg
    • Total daily dose = 80 kg X (0.5 units/kg/d) = 40 units per day
    • Basal insulin = 1/2 X 40 units = 20 units of basal per day✝
    • Premeal Insulin = 1/2 X 40 units = 20 units / 3 = approximately 7 units before each meal
    • If patient is just starting therapy, the initial basal dose should be reduced by 20 - 30%. In our example: 20 units X 0.20 = 4 units, so initial basal dose would be 20 - 4 = 16 units
  • Type 2 DM Insulin
    1. Step 1 - start with long-acting insulin or bedtime NPH
      • Initial dose: 10 units/day or 0.1 - 0.2 units/kg/day
      • Adjust dose: increase dose by 10 - 15% or 2 - 4 units once or twice weekly to achieve fasting blood sugar goal (see adjusting basal insulin and NPH dosing for other recommendations)
      • If hypoglycemia occurs: decrease dose by 10 - 20% or 4 units
      • If A1C is still above target despite achieving fasting blood sugar goal, or if A1C is not at target and insulin dose is > 0.7 - 1.0 units/kg, proceed to Step 2
    2. Step 2 - add premeal insulin before largest meal
      • Initial dose: 4 units or 10% of basal dose
      • If A1C < 8%, consider decreasing basal insulin dose by same amount
      • Adjust dose: increase dose by 1 - 2 units or 10 - 15% twice weekly to achieve pre- and postprandial goals (see adjusting premeal insulin for other recommendations)
      • If hypoglycemia occurs: decrease dose 2 - 4 units or 10 - 20%
      • For patients using bedtime NPH:
        • Consider switching to twice daily NPH by taking 80% of current bedtime NPH dose and giving 2/3 in the morning and 1/3 at bedtime.
          • Example:
          • Current bedtime NPH dose is 30 units
          • 0.80 X 30 = 24 units
          • 2/3 of 24 = 16 units in the morning
          • 1/3 of 24 = 8 units in the evening
      • If A1C still not at target, proceed to Step 3
    3. Step 3 - add premeal insulin before other meals in stepwise fashion
      • Add prandial insulin to an additional meal and use the guidelines in Step 2 to adjust
      • If not controlled with 2 preprandial doses, add to a third meal
      • Stepwise addition of prandial insulin every 3 months is associated with a lower risk of hypoglycemia and greater patient satisfaction
  • Pre-meal Insulin

    Carbohydrate counting

    • In carbohydrate counting, premeal insulin is adjusted based on the amount of carbohydrates to be consumed in each meal
    • The carbohydrate counting method is used to determine the amount of carbohydrates in a meal
    • An insulin to carbohydrate ratio (ex. 1 unit/10g of carb) is used to calculate the premeal insulin dose
    • A typical starting ratio is 1 unit of premeal insulin for every 10 grams of carbs to be consumed
    • An individual may have different carbohydrate ratios for breakfast, lunch, and dinner because a person's response to insulin may vary throughout the day
    • Example:
      • 60 grams of carbs to be consumed for lunch
      • Patient's ratio is 1 unit of insulin for every 10 grams of carbs
      • Patient injects 6 units of premeal insulin before eating meal

    Calculate a correction factor

    • Step 1 - calculate the correction factor
      • For Regular insulin (Humulin R, Novolin R)
        • Divide 1500 by the patient's total daily dose of insulin
        • The result will equal the estimated drop in blood sugar (in mg/dl) from 1 unit of regular insulin
      • For Rapid insulin (Novolog, Humalog, Apidra, Fiasp, Admelog)>
        • Divide 1800 by the patient's total daily dose of insulin
        • The result will equal the estimated drop in blood sugar (in mg/dl) from 1 unit of rapid insulin [4,12]
      • Example:
        • Patient's total daily dose of insulin (premeal + basal) is 60 units
        • Patient uses regular insulin as premeal insulin
        • 1500/60 = 25
        • Patient can expect that for every 1 unit of regular insulin they inject, their blood sugar will come down 25 mg/dl
    • Step 2 - Once the correction factor is calculated, the patient can then figure out how much insulin to supplement
      • Example:
        • Patient from above: correction factor is 25 mg/dl
        • Patient checks pre-lunch blood sugar and it is 175 mg/dl (desired range 80 - 120 mg/dl)
        • 175 - 120 = 55 mg/dl
        • 55/25 = approximately 2
        • Patient would add 2 extra units of regular insulin to premeal dose

    Adjustments to Correction Factor

    • If pre-lunch average is not in desired range (80 - 120 mg/dl), adjust breakfast ratio
    • If pre-dinner average is not in desired range (80 - 120 mg/dl), adjust lunch ratio
    • If pre-bedtime snack average is not in desired range (80 - 120 mg/dl), adjust dinner ratio
    • If average blood sugar is > 120 mg/dl, adjust ratio by subtracting 2 - 3g of carbohydrate
      • Example:
        • Current ratio 1 unit / 10g of carb
        • Pre-lunch average > 120 mg/dl
        • Change breakfast ratio to 1 unit / 7g of carb
    • If average blood sugar is < 80 mg/dl, adjust ratio by adding 2 - 3g of carbohydrate
      • Example:
        • Current ratio 1 unit / 10g of carb
        • Pre-bedtime snack average < 80 mg/dl
        • Change dinner ratio to 1 unit / 13g of carb
        • If average blood sugar is 80 - 120 mg/dl, do not adjust ratio
  • Insulin NPH Dosing Adjustments

    Initial:

    • 0.1 to 0.2 units/kg/day or 10 units/day administered as a single dose (usually at bedtime) or in 2 divided doses (ADA 2020; Lipska 2017).
    • If HbA1c >8% prior to initiation of basal insulin, 0.2 to 0.3 units/kg/day is recommended (AACE/ACE [Garber 2020]).

    For elevated fasting plasma glucose:

    • Adjust dose using evidence-based titration algorithm (eg, by 2 units every 3 days) while avoiding hypoglycemia (AACE/ACE [Garber 2020]; ADA 2020).

    For elevated HbA1c despite achieving fasting plasma glucose target:

    • Patients using once daily insulin NPH (eg, at bedtime):
      • Consider switching to a twice daily regimen by administering ~80% of the current bedtime dose in 2 divided doses (one example division would be 2/3 of the dose in the morning and 1/3 of the dose at bedtime) (ADA 2020).
    • Patients using twice daily insulin NPH:
      • Consider intensification of therapy with additional agents that target postprandial glucose rather than continuing to increase the insulin NPH dose (AACE/ACE [Garber 2020]; ADA 2020).

    For hypoglycemia:

    • If no clear reason for hypoglycemia, decrease dose by 10% to 20% (ADA 2020);
    • For severe hypoglycemia (ie, requiring assistance from another person or blood glucose <40 mg/dL) reduce dose by 20% to 40% (AACE/ACE [Garber 2020]).

    Dosage adjustment when adding prandial insulin:

    • Consider reducing the basal insulin dose by 4 units (or ~10%) if HbA1c is <8% when initiating prandial insulin (ADA 2020).

    Patients with diabetes receiving enteral feedings (ADA 2020):

    • Note: TDD of insulin is divided into a basal component (intermediate- or long-acting insulin) and nutritional and correctional components (regular insulin or rapid-acting insulins).
    • Basal component:
      • SubQ: Continue previous basal insulin dose or administer 30% to 50% of TDD as insulin NPH; if basal insulin naive, administer insulin NPH 5 units every 12 hours.

    Patients with diabetes undergoing surgery:

    • SubQ: On the evening before surgery or procedure, reduce the usual dose by 25%; on the morning of surgery or procedure, reduce the usual dose by 25% to 50% (ADA 2020; Pichardo-Lowden 2012).

    Conversion from long-acting insulin analogs to insulin NPH:

    • Consider initiating insulin NPH at 80% (eg, 20% reduction) of previous basal insulin total daily dose; administer as a single dose (usually at bedtime) or in 2 divided doses (ADA 2020; Lipska 2017).

    Dosage adjustment for concomitant therapy:

    • Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.
  • Dosing NPH Insulin in T2DM

    Twice-daily NPH regimens divide the daily dose between a morning and evening dose. In studies, dose distribution has varied widely, with some splitting the dose 50-50, some giving 2/3 in the morning and 1/3 in the evening, and others giving 1/3 in the morning and 2/3 in the evening.

    • Step 1 - Initial dose
      • If A1C > 10% and no blood sugars < 126 mg/dl in last 2 weeks ✝
        • Start with NPH 10 units twice daily
      • If A1C < 10% or any blood sugars < 126 mg/dl in last 2 weeks ✝
        • Start with NPH 6 units twice daily
      • Morning dose should be given at approximately the same time each day upon awakening
      • Evening dose should be given at bedtime
      • If patient has not been checking blood sugars, have them check and report a fasting blood sugar once they obtain a monitor
    • Step 2 - Monitor blood sugars
      • Check fasting blood sugar in the morning and predinner blood sugar in the evening on a daily basis
    • Step 3 - Determine insulin adjustment
      • After 3 consecutive days of readings, average all the blood sugars (fasting and predinner) together
      • Use this average and the table below to determine how much insulin will be added (or subtracted) to the total daily dose
    Blood sugar average (fasting and predinner) over 3 days Adjustment to total daily NPH dose
    ≥ 180 add 8 units
    160 - 179 add 6 units
    140 - 159 add 4 units
    120 - 139 add 2 units
    100 - 119 add 1 unit
    80 - 99 no change
    60 - 79 subtract 2 units
    < 60 subtract 4 or more units
    • Step 4 - Distributing the insulin adjustment
      • Average the fasting and predinner blood sugars over the last 3 days separately
      • Determine a range for each average (fasting and predinner) from the two tables below
    Table 54: Fasting blood sugar ranges
    Average blood sugar (mg/dl) Range
    > 160 3
    101 - 160 2
    ≤ 100 1
    Table 55: Predinner blood sugar ranges
    Average blood sugar (mg/dl) Range
    > 160 3
    131 - 160 2
    ≤ 130 1
  • Converting from long-acting insulins to NPH
    • Total daily basal insulin dose: reduced by 25 - 30% upon initiation.
      • This approach helps prevent hypoglycemia but may require significant up-titration after switching.
    • Patients who are also receiving premeal insulin should be particularly cautious because NPH may potentiate the peak effect of short-acting insulins
  • SLIDING SCALE INSULIN
    Blood sugar (mg/dl) Insulin dose in units of rapid or short-acting
    60-110 0
    111 - 150 2
    151 - 200 4
    201 - 250 6
    251 - 300 8
    301 - 350 10
    351 - 400 12
    > 400 14
  • Syringes

    Syringes come in:

    • 30 unit syringe
    • 50 unit syringe
    • 100 unit syringe

Diabetic Neuropathy

Low-dose naltrexone is as effective as amitriptyline in the treatment of painful diabetic neuropathy and has a superior safety profile (strength of recommendation [SOR], B; single randomized controlled trial [RCT]).

Reference:

  • J Fam Pract. 2023 September;72(7):320-321 | doi: 10.12788/jfp.0654

Management Plan for Type 2

  1. Healthy eating, weight control, increased physical activity
  2. Metformin
  3. (2 Drug) Metformin + one of the following:
    • GLP-1 Receptor Agonist
    • DPP4 Inhibitor
    • SU
    • Basal Insulin
  4. (3 Drug) Metformin + two of the previous
    • Do not mix DPP-4-I and GLP-1-RA (both work similarly)
    • Do not mix SU and insulin (increased risk of hypoglycemia)
  5. More complex insulin regimens

NOTE - guidelines do include TZDs but I do not use them d/t my concern with weight gain, cancer, edema, and HF.

Other Therapy Aspects:

  • Exercise (even if it is a little)
    • A growing body of evidence suggests that interrupting prolonged sitting with intermittent brief periods of standing or light exercise can improve glucose metabolism
  • Metformin should be used as first-line therapy to reduce microvascular complications, assist in weight management, reduce the risk of cardiovascular events, and reduce the risk of mortality in patients with type 2 diabetes mellitus. (LOE A)
  • Patients with prediabetes or new-onset diabetes should undertake extensive lifestyle changes to slow the progression of type 2 diabetes. (LOE A)
  • Patients with existing cardiovascular disease, two or more cardiovascular disease risk factors, or duration of diabetes of 10 years or more should have higher A1C goals because of a lack of benefit and the potential for increased risk of mortality compared with lower A1C goals. (LOE A)
  • Self-monitoring of blood glucose levels for patients taking noninsulin therapies does not significantly affect glycemic control. (LOE B)
  • Painful Diabetic Neuropathy - See under Neurology section

References:

  • NEJM JW Gen Med Jul 1 2012
  • Diabetes Care 2012; 35:976

Oral medications

  • Metformin

    See also:

    You can use metformin in anyone whose estimated glomerular filtration rate (eGFR) is > 30 mL/minute/1.73 m2 and you do not have to stop metformin in someone undergoing a dye study unless their EGFR is < 60 mL/minute/1.73 m2.

    Let me explain. We used to use serum creatinine cut-points to determine when we should prescribe metformin in patients with any degree of renal insufficiency. Now the FDA has done away with that guideline and really expanded the number of patients that we can safely keep on metformin. These are the rules:

    Test the eGFR in any patient before you start metformin. If it's > 45 mL/minute/1.73 m2, you are fine. That patient is fully eligible to be on metformin.

    For the most part, the FDA does not recommend starting metformin in patients with an eGFR between 30 and 45 mL/minute/1.73 m2. But they still consider metformin safe if your patient is on metformin already and seems to be deriving some benefit. So, patients down to an eGFR of 30 mL/minute/1.73 m2 can remain on their metformin.

    Patients with an eGFR < 30 mL/minute/1.73 m2 should not be on metformin.

    The notion that we don't have to stop metformin in every patient undergoing a radiographic dye study makes me incredibly happy. I've spent countless hours dealing with this in my patients. The specific guidelines are as follows:

    If the eGFR is > 60 mL/minute/1.73 m2, don't worry about it. They can continue taking their metformin throughout, unless it's an intra-arterial dye study. In that case, you are going to need to hold the metformin and make sure that the renal function stays stable.

    If the eGFR is < 60 mL/minute/1.73 m2—meaning between 30 and 60—then, as we did before, you stop the metformin before the patient undergoes the dye study and recheck in 48 hours to make sure that the eGFR is still in a safe range.

    For many of our patients undergoing radiographic dye studies who have an eGFR of > 60 mL/minute/1.73 m2, we are not going to need to hold the metformin. I think that will make our lives much easier and, frankly, will be better for our patients.

    These guidelines are consistent with recommendations that have been used throughout the world for many years. I really believe that they are safe and likely to help us use metformin in more of our patients who will benefit from the drug. Thank you.

  • Metformin may work by changing gut bacteria makeup

    Randomized, placebo-controlled, double-blind study published in Nature, April 2017:

    • Population:
      • 40 Individuals with newly diagnosed Type 2 Diabetes Mellitus
    • Intervention:
      • calorie restricted diet vs metformin for 4 months.
    • Outcomes:
      • gut microbiota changes and A1c.
    • Results:
      • metformin, but not calorie restriction, had rapid effects on the composition and function of the gut microbiota in parallel with the reduction of %HbA1c and fasting blood glucose concentrations.
      • Transfer of the microbiota to germ-free mice showed that the metformin-altered microbiota could improve glucose metabolism.
      • Furthermore, transcriptome analyses of feces showed that metformin had direct effects on the gut microbiota, specifically expression of bacteria genes that regulate metal transporters.
    • Conclusion:
      • Some of metformin’s antidiabetic effects are from altered gut microbiota.
      • Additional studies are essential to further identify microbial proteins and to determine how they interact with the host targets in improving host metabolism.

    Reference:

  • SUs/TZDs
    • Later generation are recommended to reduce hypoglycemia
      • Glimepiride
      • Glipizide
    • Thiazolidinediones
      • Pioglitazone

    In general:

    • Use Glipizide or Glimiperide; DO NO NOT USE Glyburide
    • NO Glyburide in elderly d/t longer half-life than glimiperide and glipizide (more likely to cause hypoglycemia

Pre-Diabetes

Lifestyle Interentions:

  • Therapy team
    • Frequent in-person visits initially
  • Self-Monitoring
    • Food types
    • Portions
    • Calories
    • Min of activity
    • Steps each day
  • Dietary modification
    • Decrease caloric intake by 700 cal/d
    • Target saturated fats and simple sugars
  • Weight loss
    • Usual goal of >=7% BW if BMI >25
  • Activity
    • >=30 min/d for 5 d/wk
  • Other
    • Smoking cessation
    • Improved sleep hygeine
    • Stress reduction
  • Medications
    • Metformin (assess for Vit B12 with prolonged therapy)

Reference:

Self-monitoring

  • For patients who have had diabetes longer than one year and are not using insulin, evidence suggests that the benefit of self-monitoring of blood glucose in lowering A1C levels is small at six months and disappears by 12 months. Self-monitoring of blood glucose does not improve health-related quality of life, general well-being, or patient satisfaction. (SOR: B)
  • For those who have been diagnosed with diabetes for more than one year, especially those whose blood glucose levels are well controlled without insulin, the evidence supports discontinuing (or not initiating) selfmonitoring of blood glucose because of the added cost and inconvenience of testing and lack of improvement in patient-oriented outcomes.

References:

  • (Malanda UL, Welschen LM, Riphagen II, Dekker JM, Nijpels G, Bot SD. Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin. Cochrane Database Syst Rev. 2012 Jan 18;1:CD005060. doi: 10.1002/14651858.CD005060.pub3.)

Special tests to classify DM

Test Desc Utility
C peptide Reflects endogenous insulin production Consider in pts with possible LADA or Type 1 but neg antibodies
Zinc transporter 8 Ab Correlates with utoimmune mediated DM Consider in pts with possible LADA or Type 1 but neg antibodies
Insulinoma-associated Ag-2 Autoimmune Ab associated with DM I Distinguish DM 1 or LADA from DM 2
Insulin Ab   May be more common in LADA
Islet cell Ab   May be more common in LADA
Glutamic acid decarboxylase 65   May be more common in LADA

References:

  • AFP Vol 93 No 2 Jan 2016

Weight loss in pts with DM 2

  • Modest weight loss reduces insulin resistance

(American Diabetes Association. Standards of medical care in diabetes—2010 [published correction appears in Diabetes Care. 2010;33(3):692]. Diabetes Care. 2010;33(suppl 1):S11-S61)

  • Low-carbohydrate or low-fat calorie-restricted diets may produce weight loss for up to one year, after which behavior modification and physical activity are most helpful.

-Fluoxetine (Prozac) and orlistat (Xenical) produce modest short-term weight loss, but their long-term benefits are unclear and their safety is uncertain. (SOR: B)

  • Patients with diabetes can safely achieve modest short-term weight loss using fluoxetine or orlistat.
  • A greater proportion of patients with diabetes achieved a 5 or 10 percent loss from their initial body weight with orlistat compared with placebo (relative risk = 2.50 for 5 or 10 percent loss; 95% CI, 2.02 to 2.97).

(Hutton B, Fergusson D. Changes in body weight and serum lipid profile in obese patients treated with orlistat in addition to a hypocaloric diet: a systematic review of randomized clinical trials. Am J Clin Nutr. 2004;80(6):1461-1468.)

(Norris SL, Zhang X, Avenell A, Gregg E, Schmid CH, Lau J. Pharmacotherapy for weight loss in adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005 Jan 25;(1):CD004096.)

SU

Glimepiride, glipizide, and glyburide all reduce in HbA1c about 1% to 2%.

Glimepiride is purported to have the highest incidence of hypoglycemia of the 3 agents

  • Might be due to having the longest half-life of the 3 sulfonylureas
  • Once-daily dosing at all doses

Glyburide and glipizide require twice-daily administration as their doses are increased.

All 3 agents undergo hepatic metabolism, with only glyburide having active metabolites.

  • These metabolites are cleared renally
  • Patients with reduced kidney function will experience accumulation, which can lead to increased therapeutic effects and increase the risk of hypoglycemia.

"The relative lack of advantages of glyburide compared with the other agents, combined with its increased risk of adverse effects, creates a risk-to-benefit ratio that does not favor its use. Given that the risks are increased only in patients with poor kidney function, one could simply adjust the choice of agents to select from, but owing to the lack of advantages of glyburide, it makes more sense to remove it as a choice. There is not a scenario in which glyburide is the preferred agent, but there are certain scenarios in which it is clearly the least-preferred agent."

Reference:

  • Consultant360 Volume 57 - Issue 4 - April 2017

Testosterone

See also: Drugs

General thoughts:

  • Visceral adiposity affects leptin/inflammatory cytokines which affects testosterone (lowers) and hypothalamic dysfunction.
  • Alcohol, opioids blunt testosterone production

Signs and Symptoms hypogonadism:

  • Anemia
  • Decline in cognitive function
  • Decreased sexual function
  • Decreased or absent morning erections
  • Depressed mood
  • Incomplete sexual development
  • Increased fatigue
  • Loss of axillary and pubic hair
  • Loss of body hair
  • Loss of muscle strength and work capacity
  • Male factor infertility
  • Reduced lean body mass
  • Small testes
Table 56: Causes of Hypogonadism in Men
Type Lab Origin Possible causes
Primary Decreased total Test Congenital Chrom abnormalities, cryptorchidism, FSH/LH receptor gene
  Increased LH/FSH   mutations, Klinefelter syndrome, myotonic dystrophy
    Acquired Chemotherapy, hypothyroidism, orchitis/epididymo-orchitis,
      radiation/trauma to testes, testicular torsion
Secondary Decreased total Test Congenital Kallmann syndrome, Prader-Willi syndrome, other genetic
  Decreased LH/FSH Acquired Chronic opioid use, hyperprolactinemia, pituitary tumors,
      sellar radiation, sleep deprivation, surgery, trauma
Mixed primary Decreased total Test Acquired Aging, cancer, chronic glucocorticoid use, chronic kidney disease,
and secondary Variable LH/FSH   chronic obstructive pulmonary disease, cirrhosis, diabetes mellitus,
      hemochromatosis, HIV, obesity

Contraindications:

  • Breast ca
  • Hct >48%
  • Fertility planning
  • MI or CVA in last 6 months
  • Prostate ca
  • PSA >3ng/mL in high risk or >4 in others
  • Severe lower urinary tract symptoms
  • Thrombophilia
  • Uncontrolled congestive heart failure
  • Untreated severe OSA

References:

  • AFP Vol 109 No 6 Jun 2024
  • AFP Vol 96 No 7 Oct 2017
  • FMX 2016
  • JFP Vol 65, No 12 Dec 2016

Secondary hypogonadism

Lab results:

  • Two morning total testosterone measurements <350 ng/dL (<10.4 nmol/L) AND
  • Low or inappropriately normal LH level (<12 IU/L)

Dosing of enclomiphene citrate 6.25 mg/day, 12.5 mg/day and 25 mg/day

  • The responder analysis suggests that the 12.5 mg dose is superior to the 6.25 mg dose in terms of bringing men into the mid-normal range.
  • The 25 mg dose produces significantly greater levels of LH than either of the two lower doses
  • Enclomiphene citrate treatment leads to a persistence of its total testosterone elevating activity for at least 1 week after discontinuation by maintaining LH

Adverse Effects of enclomiphene:

  • Headache(was observed in 3.3% of patients)
  • Common Cold(was observed in 1.7% of patients)
  • Nausea(was observed in 2.1% of patients)
  • Hot flush(was observed in 1.7% of patients)
  • Diarrhea(was observed in 1.9% of patients)
  • Joint pain(was observed in 1.2% of patients)
  • Dizziness(was observed in 1% of patients)
  • Study: Testosterone Restoration by Enclomiphene Citrate in Men with Secondary Hypogonadism: Pharmacodynamics and Pharmacokinetics.

    Objectives

    • To determine the pharmacodynamic profile of serum total testosterone and luteinizing hormone (LH) levels in men with secondary hypogonadism after initial and chronic daily oral doses of enclomiphene citrate vs transdermal testosterone.
    • To determine the effects of daily oral doses of enclomiphene citrate in comparison with transdermal testosterone on other hormones and markers in men with secondary hypogonadism.

    Patients and Methods

    • This was a randomized, single-blind, two-centre, phase II study to evaluate the effects of three different doses of enclomiphene citrate (6.25, 12.5 and 25 mg) vs transdermal testosterone on 24-h LH and total testosterone in otherwise normal healthy men with secondary hypogonadism.
    • Forty-eight men were enrolled in the trial (the intent-to-treat population), but four men had testosterone levels >350 ng/dL at baseline. Forty-four men completed the study per protocol. All subjects enrolled in this trial had serum total testosterone in the low range (<350 ng/dL) and had low to normal LH (<12 IU/L) on at least two occasions.
    • Total testosterone and LH levels were assessed each hour for 24 h to examine the effects at each of three treatment doses of enclomiphene citrate vs a standard dose (5 g) of transdermal testosterone. In the initial profile, total testosterone and LH were determined in a naïve population after a single initial oral or transdermal treatment (day 1). This was contrasted to that seen after 6 weeks of continuous daily oral or transdermal treatment (day 42).
    • The pharmacokinetics of enclomiphene citrate were assessed in a select subpopulation.
    • Serum samples were obtained over the course of the study to determine the levels of various hormones and lipids.

    Results

    • After 6 weeks of continuous use, the mean (sd) concentration of total testosterone at day 42 was 604 (160) ng/dL for men taking the highest dose of enclomiphene citrate (enclomiphene citrate, 25 mg daily) and 500 (278) ng in those men treated with transdermal testosterone. These values were higher than day 1 values but not different from each other (P = 0.23, t-test).
    • All three doses of enclomiphene citrate increased the testosterone concentration at time 0 of each 24-h sampling period, and the mean, maximum, minimum and range of testosterone concentrations over the 24-h sampling period. Transdermal testosterone also raised total testosterone, albeit with more variability, and with suppressed LH levels.
    • The patterns of total testosterone over the 24-h period after 6 weeks of dosing could be fit to a nonlinear function with morning elevations, mid-day troughs, and rising night-time levels.
    • Enclomiphene citrate and transdermal testosterone increased levels of total testosterone within 2 weeks, but they had opposite effects on FSH and LH.
    • Treatment with enclomiphene citrate did not significantly affect levels of thyroid-stimulating hormone, adenocorticotropic hormone, cortisol, lipids or bone markers. Both transdermal testosterone and enclomiphene citrate decreased insulin-like growth factor-1 levels (P < 0.05) but suppression was greater in the enclomiphene citrate groups.

    Conclusions

    • Enclomiphene citrate increased serum LH and total testosterone; however, there was not a temporal association between the peak drug levels and the maximum concentration levels of LH or total testosterone.
    • Enclomiphene citrate consistently increased serum total testosterone into the normal range and increased LH and FSH above the normal range. The effects on LH and total testosterone persisted for at least 1 week after stopping treatment.

    Reference:

    • Wiehle R, Cunningham GR, Pitteloud N, Wike J, Hsu K, Fontenot GK, Rosner M, Dwyer A, Podolski J. Testosterone Restoration by Enclomiphene Citrate in Men with Secondary Hypogonadism: Pharmacodynamics and Pharmacokinetics. BJU Int. 2013 Jul 12;112(8):1188–200. doi: 10.1111/bju.12363. Epub ahead of print. PMID: 23875626; PMCID: PMC4155868.

Endocrine Guidelines:

Diagnosis

  1. H&P - If symptoms -> test
  2. Morning Total Testosterone
  3. If low (<300ng/dL):
    • Exclude reversible illness, drugs, nutritional deficiencies
    • Repeat TT and also obtain LH+FSH
  4. If confirmed low TT and low or normal LH/FSH:
    • Secondary
    • Consider workup for pituitary disorders (prolactin, MRI)
    • Rule out medication use, systemic illness, or chronic conditions as cause
  5. If confirmed low TT and high LH/FSH:
    • Primary
    • Consider chromosomal (Karyotye) testing

Monitoring:

  • BPH: Monitor patients with benign prostatic hyperplasia (BPH) treated with androgens due to an increased risk for worsening signs and symptoms of BPH
  • PSA: Monitor prostate specific antigen (PSA) levels periodically. Patients treated with androgens may be at increased risk for prostate cancer and should be evaluated prior to initiating and during treatment with androgens
  • Hematocrit and Hemoglobin: Monitor hematocrit prior to and periodically during treatment. Hematocrit can be re-evaluated 3 to 6 months after initiation of therapy, and then annually thereafter. Monitor hemoglobin periodically. Increases in hematocrit, reflective of increases in red blood cell mass, may require lowering or discontinuation of testosterone. An increase in red blood cell mass may increase the risk of thromboembolic events
  • Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE): If a venous thromboembolism (VTE) is suspected, discontinue AndroGel 1.62% and initiate appropriate workup and management. VTE, including DVT and PE, has been reported in patients using testosterone products
  • Cardiovascular Risk: Some studies, but not all, have reported an increased risk of major adverse cardiovascular events (MACE) in association with use of testosterone replacement therapy in men. Patients should be informed of this possible risk when deciding whether to use or to continue to use AndroGel 1.62%
  • Liver Function: Monitor liver function tests (LFTs) periodically. Treatment with androgens may lead to serious hepatic effects. AndroGel 1.62% is not known to cause these adverse effects
  • Lipids: Monitor lipid concentrations periodically. Changes in serum lipid profile may require dose adjustment or discontinuation of testosterone therapy
  • Serum Calcium Concentrations: Androgens should be used with caution in cancer patients at risk of hypercalcemia (and associated hypercalciuria). Regular monitoring of serum calcium concentrations is recommended in these patients

Monitor Pre-Dose Morning Serum Total Testosterone (Tt) Concentration:

  • 14 And 28 Days
    • Testosterone
  • 3 And 6 Months
    • Hematocrit
  • Periodically
    • Testosterone
    • Psa
    • Hemoglobin
    • Lipids
    • Lfts
    • Serum Calcium Concentration (For Cancer Patients)
  • After Dose Adjustment
    • Testosterone

References:

How to self inject testosterone

Here are some videos on how to self inject testosterone:

  • Monitoring
    • Check CBC at baseline and q3 months (annual if stable)
      • If Hct >54% consider stopping therapy or periodi phlebotomy (monthly)
    • Check PSA and Perform DRE at baseline and 3 and 6 months
      • Follow screening guidelines of q6mo PSA
      • Refer to urologist if PSA increases by >1.4mcg/L over 12mo
    • Measure BMD at baseline and every 2 years if history of osteopenia or osteoporosis
    • Evaluate formulation specific adverse events episodically and yearly
    • Lipid panel and LFTs anually

    For injection supplementation:

    • Check midway between injections with goal 500-600

    References:

    • AFP Vol 96 No 7 Oct 2017
    • FMX 2016
    • JFP Vol 65, No 12 Dec 2016
    • UpToDate

Other Medications

  • Anastrazole

    American Urologic Association guideline Arimidex, for off label use in men, Arimidex is dosed at 0.05 to 1mg every three days. Side effects of the medication include hot flashes, dyspnea, peripheral edema, and bone pain.

    • Study: The Utilization and Impact of Aromatase Inhibitor Therapy in Men With Elevated Estradiol Levels on Testosterone Therapy

      Testosterone therapy (TTH) for testosterone deficiency (TD) may lead to elevated estradiol (E2) levels requiring management to avoid unnecessary adverse effects.

      Aim

      • To examine the impact of aromatase inhibitors, specifically anastrozole (AZ), in men with elevated E2 on TTH.

      Methods

      • All patients on TTH at a high volume sexual medicine practice between 2005 and 2019 were reviewed. Men with E2 levels >60 pg/mL regardless of symptoms or 40–60 pg/mL with subjective symptoms were started on AZ 0.5 mg 3x/week.
      • Routine hormone profile and symptom assessment were completed to ensure symptom resolution, reduction of E2 levels and maintenance of testosterone levels. Multivariable logistic regression was completed to determine predictors of men more likely to respond to therapy.

      Main Outcome Measure

      • Demographic and hormonal profiles of men on AZ and predictors of response to therapy.

      Results

      • 1708 men with TD were placed on TTH. Of these, 51 (3%) were treated with AZ (AZ+). After exclusions, 44 (2.6%) had elevated estradiol levels >60 pg/mL or >40 pg/mL with symptoms. Demographics were similar between groups. TTH distribution between groups was different with greater rates of topical TTH in the AZ- groups (AZ+:34.1% vs AZ-:53.5%) and greater rates of intramuscular TTH in the AZ+ group (AZ+:38.6% vs AZ-:18.5%) (P = .017 overall).
      • Of the 44 men treated with AZ, 68.0% had pre-AZ E2 levels ≥60 pg/mL and 32.0% had levels between 40 and 60 pg/mL.
      • Median pre-AZ E2 levels were 65 (interquartile range [IQR], 55–94) pg/mL in comparison to 22 (IQR 15–38) pg/mL post-AZ E2 levels (P < .001).
      • Total testosterone levels were similar before and after AZ use (616 (IQR 548–846) ng/dL and 596 (IQR 419–798) ng/dL, respectively, P = .926).
      • No statistically significant predictive factors of E2 reduction using AZ were found.

      Conclusion

      • While no statistically significant predictors for E2 recovery in men on AZ were found, AZ remains a reasonable option for E2 reduction in men with elevated levels on TTH.

      Reference:

      • Punjani N, Bernie H, Salter C, Flores J, Benfante N, Mulhall JP. The Utilization and Impact of Aromatase Inhibitor Therapy in Men With Elevated Estradiol Levels on Testosterone Therapy. Sex Med. 2021 Aug;9(4):100378. doi: 10.1016/j.esxm.2021.100378. Epub 2021 Jun 3. PMID: 34090245; PMCID: PMC8360915.
      • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360915/
  • Clomid

    Clomiphene Citrate (Brand name Clomid) is a selective estrogen receptor modulator. Initially developed in the 1960’s to treat female infertility, Clomid is commonly used off-label in men to treat male infertility and low testosterone. In men with Low-T, Clomid is an excellent and effective oral medication to raise serum testosterone levels and improve the testosterone to estradiol ratio. Clomid can improve and raise testosterone. In some men Clomid can raise testosterone above 1000 ng/dL. Clomid works by blocking the estrogen receptor leading to an increase in both FSH and LH. These two signaling hormones released by the pituitary stimulate the testis to raise testosterone levels and enhance spermatogenesis (sperm production).

Testosterone Order   edit

Initiation (after labs)

  • ICD10: E29.1
  • Testosterone cypionate 100mg/ml 1ml (100 mg) q2 wks
  • B-D #9571 SYR/NDL 3ML 23GX1 LL, 30 syringes for 90 days / Use to inject medication
  • B-D #5195 Needles 18Gx1, 30 units for 90 days / Use to draw up medication as directed

Who to treat

Low T Diagnosis = low testosterone with symptoms

  • Consider testosterone replacement in those with both laboratory and clinical evidence of hypogonadism (SOR B)
  • Consider in symptomatic men with clinical symptoms to improve sexual function, well-being, lean muscle mass and bone density (++)
  • Offer to men with low T and low libido/ED in addition to pursuing additional workup and therapies (++)
  • Consider offering short term replacement to men on chronic glucocorticoids with low T levels (+)
  • Recommend AGAINST in men with breast or prostate cancer or with a PSA >4ng/ml (+)

Postmenopausal women for hypoactive sexual desire disorder

  • Recommended dosage is 300mcg/day (need compound pharmacy)
  • Begin with 6mo trial period, continue only if patient responds favorable
  • No effectiveness data after 24mo

Contraindications to starting testosterone therapy

Absolute Relative
Breast Ca Baseline Hct >50%
Polycythemia (Hct >54%) Desire for fertility
Prostate Ca Severe lower urinary tract symtoms
PSA >4mcg/L or nodule on DRE Uncontrolled HF
  Untreated OSA

Reference:

  • AFP Vol 96 No 7 Oct 2017
  • FMX 2016
  • JFP Vol 65, No 12 Dec 2016

Thyroid

Hyperthyroidism

Recommendations to treat hyperthyroidism:

  TSH < 0.1 mIU/L TSH 0.1-0.4 mIU/L
>65yo Treat Consider Treat
<65yo and asymptomatic Consider Treat Observe
<65yo and:    
- Heart disease Treat Consider Treat
- Hyperthyroid symptoms Treat Consider Treat
- Osteoporosis Treat Consider Treat
- Postmenopausal Treat Consider Treat

Reference:

  • AFP Vol 95 No 11 Jun 2017
  • Graves Disease

    Graves disease requires one of the three treatment options:

    • an antithyroid medication (methimazole [Tapazole] or propylthiouracil)
    • radioactive iodine (I-131) ablation of the thyroid gland
    • surgical thyroidectomy

    The choice of treatment depends on the benefits vs. risks in a specific clinical situation and on the patient's preference.

    Antithyroid Medications.

    • Antithyroid medications are thionamides; they inhibit thyroid peroxidase, blocking the synthesis of T3 and T4
    • Graves disease remits in up to 30% of patients treated with thionamides, these medications can be used as the initial treatment, with ablation or thyroidectomy performed if remission does not occur.25,26 Once medical therapy is discontinued, relapse occurs in 30% to 70% of patients, mostly within the first year.27 After discontinuation, thyroid function should be monitored every one to three months for six to 12 months, and the patient should be instructed to contact the physician if symptoms recur.

    For patients using methimazole, the prevalence of agranulocytosis is 0.17%, the incidence of hepatitis is 3.17 per 1,000 person-years, and the incidence of acute hepatic failure is 0.32 per 1,000 person-years

    Patients should be instructed to discontinue medication use and contact their physician if they develop jaundice, acholic stools, dark urine, arthralgias, abdominal pain, nausea, vomiting, fever, or sore throat. A baseline complete blood count (CBC) with differential and a hepatic panel should be obtained before initiating an antithyroid medication. Subsequent routine monitoring of CBC is unnecessary, but CBC with differential should be obtained if fever and/or pharyngitis develop.

    Free T4 and total T3 should be obtained four weeks after starting a thionamide and every four to eight weeks thereafter with the dosage adjusted based on results. Once free T4 and total T3 levels normalize, they should be monitored every three months. Serum TSH is of limited value early in the treatment course because levels may remain suppressed for several months after treatment is started. An antithyroid medication should be continued for 12 to 18 months, then tapered or discontinued if the TSH level is normal at the time. Elevated or above-normal TSH levels (greater than 4.0 mIU per mL) at antithyroid drug discontinuation is associated with an increased likelihood of permanent remission

    Radioactive Iodine Ablation. Radioactive iodine ablation of the thyroid gland is the most common treatment of Graves disease in the United States. It is contraindicated in pregnancy. Moderate to severe Graves orbitopathy is a relative contraindication, especially in patients who smoke, because radioactive iodine may exacerbate the eye disease.32,33 In mild cases of Graves orbitopathy, radioactive iodine ablation can be performed with concomitant glucocorticoid therapy. Nonradioactive iodine impedes radioactive iodine uptake by iodide transporter; therefore, exposure to large amounts of nonradioactive iodine (e.g., iodinated contrast, amiodarone) should be avoided within three months before radioactive iodine ablation. Pregnancy should be ruled out within 48 hours before radioactive iodine ablation and avoided for six months thereafter.1 A thionamide should be discontinued at least five days before the treatment but can be restarted three to five days after to maintain control of thyroid function, because it may take up to 12 weeks to achieve the full effect of radioactive iodine.

    Most patients develop permanent hypothyroidism between two and six months after radioactive iodine ablation and require thyroid hormone supplementation.1,33 Free T4 and total T3 should be measured four to eight weeks after ablation; if hyperthyroidism persists, these indices should be monitored every four to six weeks and thyroid hormone replacement started in the early stages of hypothyroidism.1

    Thyroidectomy. This treatment option is preferred in patients with goiter-induced compressive symptoms and in patients with contraindications to radioactive iodine ablation or thionamides. Besides general anesthesia risk, thyroidectomy carries a risk of inadvertently injuring parathyroid glands and recurrent laryngeal nerves.

    Reference:

Hypothyroidism

A Total T4 measures the bound and free hormone and can change when binding proteins differ (see above). A Free T4 measures what is not bound and able to enter and affect the body tissues.

An elevated TSH and low FT4 or FTI indicates primary hypothyroidism due to disease in the thyroid gland. A low TSH and low FT4 or FTI indicates hypothyroidism due to a problem involving the pituitary gland. A low TSH with an elevated FT4 or FTI is found in individuals who have hyperthyroidism.

Two common antibodies are thyroid peroxidase antibody and thyroglobulin antibody. Measuring levels of thyroid antibodies may help diagnose the cause of the thyroid problem.

For example, positive anti-thyroid peroxidase and/or anti-thyroglobulin antibodies in a patient with hypothyroidism result in a diagnosis of Hashimoto’s thyroiditis.

While detecting antibodies is helpful in the initial diagnosis of hypothyroidism due to autoimmune thyroiditis, following their levels over time is not helpful in detecting the development of hypothyroidism or response to therapy.

TSH and FT4 are what tell us about the actual thyroid function or levels.

A stimulatory TSH receptor antibody (TSI) antibody causes the thyroid to be overactive in Graves’ Disease.

If you have Graves’ disease, your doctor might also order a thyrotropin receptor antibody test (TSHR or TRAb), which detects both stimulating and blocking antibodies.

MEDICATIONS THAT INTERFERE WITH THYROID FUNCTION TESTING

There are many medications that can affect thyroid function testing. Some common examples include:

  • Estrogens, such as in birth control pills, or in pregnancy, cause high levels of total T4 and T3. This is because estrogens increase the level of the binding proteins. In these situations, it is better to ask both for TSH and free T4 for thyroid evaluation, which will typically be in the normal range.
  • Biotin, a commonly taken over-the-counter supplement, can cause the measurement of several thyroid function tests to appear abnormal, when they are in fact normal in the blood. Biotin should not be taken for 2 days before blood is drawn for thyroid function testing to avoid this effect.
  • Levothyroxine dosing adjustments
    TSH Amt to increase
    5 to <10 25-50 mcg/d
    10-20 50-75 mcg/d
    >20 75-100 mcg/d

    Initial levothyroxine dose:

    • Young, healthy patients can receive the full anticipated dose: 1.6 mcg/kg/day
    • Older patients (≥60 years) and those with coronary heart disease should start with a lower dose: 25 to 50 mcg daily
    • Levothyroxine should be taken on an empty stomach with water, ideally 30 to 60 minutes before breakfast.

    Delay levothyroxine until after lab drawn

    • No effect on TSH, Free T3, Total T4
    • Free T4 peaks two hours after taken - so can be affected

    References:

    • AFP Vol 89, No 4 Feb 2014
    • Uptodate
  • When to Refer for hypothyroidism
    • Age <18yo
    • Cardiac disease
    • Coexisting endocrine diseases
    • Myxedema coma suspected
    • Pregnancy
    • Presence of goiter, nodule, or other structural thyroid gland abnormality
    • Unresponsive to therapy

    References:

    • Endocr Pract. 2008;14(6):802-803

Thyroid nodules

Associated findings with malignant nodules:

  • H/o differentiated thyroid cancer in a 1st degree relative
  • H/o radiation exposure as a child or adolescent
  • Prior diagnosis of thyroid carcinoma
  • Male sex
  • Focal uptake of 18F-flourodeoxyglucose by the thyroid
  • Personal of FH of MEN type 2 or familial medullary thyroid cancer
  • Serum calcitonin level >50-100pg/ml
  • Residence near a nuclear reactor accident

References:

  • NEJM 373;24 Dec 2015

Thyroid nodules   edit

[2023-10-31 Tue 15:51]

Thyroid nodules >1 mc that are solid of have suspicious features such as microcalcifications or irregular marins -> FNA to r/o malignancy

Thyroid Nodule Testing

  • Thyroid ultrasonography with a survey of the cervical lymph nodes should be performed in all patients with thyroid nodules.
  • The serum thyroid-stimulating hormone level should be measured during the initial evaluation of a thyroid nodule.
  • If it is low, a radionuclide thyroid uptake scan should be performed.

Reference:

Hormone Replacement Therapy   edit

Oral estrogens should be avoided in women with hypertriglyceridemia, active gallbladder disease, or known thrombophilias such as factor V Leiden (with or without a personal history of venous thromboembolism [VTE]).

Standard Dosing:

  • transdermal estradiol (0.025 mg) or oral estradiol (0.5 mg/day), and titrate up to relieve symptoms
    • 17-beta estradiol (oral 1 mg/day or transdermal 0.05 mg/day) are adequate for symptom relief in the majority of women
  • All women with an intact uterus need a progestin to be added to their systemic estrogen to prevent endometrial hyperplasia
    • micronized progesterone
      • 100 mg daily [continuous regimen] OR
      • 200 mg/day for 12 days/month [ie, a cyclic regimen that is designed to mimic the normal luteal phase of premenopausal women]

Risks:

  • For women at moderate risk of cardiovascular disease (CVD; 5 to 10 percent 10-year risk), we suggest transdermal rather than oral estrogen. For women with a uterus, we suggest micronized progesterone rather than synthetic progestins such as medroxyprogesterone acetate (MPA).
  • We suggest nonhormonal therapies for symptomatic women who are at high risk (>10 percent 10-year risk) for CVD or moderate (1.67 to 5 percent five-year risk) to high risk (>5 percent) for breast cancer.
Table 57: CVS Risk and Menopause Hormone Therapy
10-year CVD risk <10 Years since menopause onset
Low (<5%) Menopause Hormone Therapy ok
Moderate (5 to 10%) MHT ok (choose transdermal)
High (>10%)* Avoid MHT
Table 58: Breast Ca Risk and Menopause Hormone Therapy
Risk category* 5-year NCI or IBIS breast cancer risk assessment (%) Suggested approach
Low <1.67 MHT ok
Intermediate 1.67 to 5 Caution/Counseling
High >5 Avoid

Reference:

  • UTD

Hormone Therapy for Sexual Function in Postmenopausal Women

In early postmenopausal women (within 5 years of their last menstrual period), systemic estrogen slightly improves sexual function (i.e., desire, arousal, lubrication, orgasm, satisfaction, and pain)

There is insufficient evidence to support the use of systemic hormone therapy in postmenopausal women for sexual function alone; however, in women with vasomotor symptoms, the use of systemic estrogen therapy for other indications may result in a slight improvement in sexual function

Reference:

  • AFP Vol 109 No 6 Jun 2024

Bio-identical HRT   edit

[2023-09-15 Fri 17:02]

Benefits of hormone replacement therapy are believed by many providers to include the following:

  • Increased elasticity of the blood vessels, allowing them to dilate (widen) and let the blood flow more freely throughout the body
  • Improved short-term symptoms of menopause such as hot flashes and mood swings, as well as vaginal dryness, dry skin, sleeplessness and irritable bladder symptoms
  • Decreased risk of osteoporosis and fractures (broken bones)
  • Decreased incidence of colon cancer
  • Possible decreased incidence of Alzheimer’s disease (data not conclusive)
  • Possible improvement of glucose levels

The health risks of HRT include:

  • Increased risk of endometrial cancer (only when estrogen is taken without progestin) For those who have had a hysterectomy (removal of the uterus), this is not a problem
  • Increased risk of breast cancer with long-term use or depending on age
  • Possible Increased risk of cardiovascular disease (including heart attack) with long-term use
  • Increase in inflammatory markers (such as C-reactive protein)
  • Increased risk of blood clots and stroke in susceptible patient (obese patients, those who smoke, those with history of clots

Heart attacks — The risk of having a heart attack related to use of hormone therapy appears to depend on your age. According to the landmark 2002 WHI study, there is no increased risk of heart attacks related to hormone therapy in women who:

  • Became menopausal less than 10 years before starting hormones
  • Were age 50 to 59 years when they took hormone therapy

Breast cancer — In the aforementioned WHI study using synthetic hormones primarily in those over 60, there was a small increased risk of breast cancer in those who took combined estrogen-progestin therapy but not in women who took estrogen alone. Those with a uterus must take progesterone with estrogen to prevent endometrial cancer. Those without a uterus can safely take estrogen alone.

For bio-identical HRT (FDA approved):

  • Estrogen: Estrace 0.5 mg daily for 3 weeks with 1 week off
  • If intact uterus: progesterone 100 mg qhs

Side effects:

  • Breast soreness (d/t estrogen)
  • Mood changes (d/t progesterone)
  • Bloating (d/t progesterone)
  • Vaginal bleeding - lower dose estrogen lowers risk

Reference:

ENT

Allergic rhinitis

  • Flonase/nasonex
    • Treat all symptoms also w/ nonallergic
    • Check compliance
  • 2nd gen oral antihistamines
    • Tx pruritis and rhinorrhea not well for congestion

  • Pseudoephedrine increases SBP 1 mmHg no change DBP increase pulse 3 bpm
    • Salerno SM, Jackson JL, Berbano EP. Effect of oral pseudoephedrine on blood pressure and heart rate: a meta-analysis. Arch Intern Med. 2005;165:1686-1694)

References:

  • Consultant Apr 2010 vol 50 no 4

Allergy tips

General Allergy Tips

  • If you exercise outdoors, wait until evening to do your routine; pollen counts are lower towards night!
  • If you need to mow the lawn or do outdoor yard work, consider wearing a dust mask.
  • If you have ragweed allergies, remove the plants in your yard before they bloom to help cut down on the pollen in your area!
  • Clean your HVAC system regularly, as dust can build up over time and create irritants.
  • Purchase a HEPA filter or air filtration unit; these can really reduce the amount of allergens in your home!
  • Mold-Specific Tips
  • Don’t hang your wet clothing indoors to dry; this can make mold allergies worse.
  • Reduce the amount of mold in your home! Keep basements, bathrooms, and any other room which retains humidity well-ventilated by opening windows frequently, or purchasing a dehumidifier.
  • Heat helps mold grow, so setting up a heater alone can make the problem worse!
  • If you have a carpeted room which is prone to mildew or mold, replacing the flooring with wood or tile may be a good idea!
  • Regularly clean garbage cans, sinks, and water-based appliances with a bleach solution to keep mold from building up and spreading.

Anosmia

[2023-09-15 Fri 17:34]

See also:

Anosmia

  • If nasal congestion from a cold or allergy is the cause of anosmia, treatment is usually not needed, and the problem will get better on its own. Short-term use of over-the-counter decongestants may open up your nasal passages so that you can breathe easier.
  • If a polyp or growth is present, surgery may be needed to remove the obstruction and regain your sense of smell.
  • If you suspect a medication is affecting your sense of smell, consider alternative medications
  • Sometimes a person will regain their sense of smell spontaneously.
  • If you smoke, quit. Smoking can dull your senses, including your sense of smell.
  • Unfortunately, anosmia is not always treatable, especially if age is the cause.
    • Safety:
      • Put fire detectors and smoke alarms in your home and office and
      • Take extra care with leftovers. If you have any doubt about a food's safety, don't eat it.

Common causes:

  • Changes in sense of smell are most often caused by:
    • a cold or flu
    • sinusitis (sinus infection)
    • an allergy, like hay fever
    • growths in your nose (nasal polyps)
  • These can cause:
    • loss of smell (anosmia)
    • smelling things that are not there (phantosmia), like smoke or burnt toast
    • reduced sense of smell (hyposmia)
    • changes to how things smell (parosmia)

Smell Training:

Aphthous Stomatitis   edit

[2024-04-08 Mon 17:40]

Anyone can develop canker sores. But they occur more often in teens and young adults, and they're more common in females.

Mouth ulcers can be caused by a wide range of factors including:

  • Accidentally biting the inside of your cheek.
  • Injury from a toothbrush (such as slipping while brushing).
  • Constant rubbing against misaligned or sharp/broken teeth.
  • Constant rubbing against dentures or braces.
  • Burns from eating hot food.
  • Irritation from strong antiseptics, such as a mouthwash.
  • Aphthous ulcers.
  • Viral infections such as the herpes simplex viral infection (cold sore virus).
  • Reaction to certain medications.
  • Skin rashes in the mouth (for example, lichen planus).
  • Autoimmune diseases.
  • Underlying Vitamin B2, folate or iron deficiency.
  • Underlying gastrointestinal disease such as Crohn’s disease or coeliac disease.
  • Mouth cancer.
  • Ulcers may become worse during periods of stress, illness or extreme fatigue.

Prevention Canker sores often recur, but you may be able to reduce their frequency by following these tips:

  • Watch what you eat. Try to avoid foods that seem to irritate your mouth. These may include nuts, chips, pretzels, certain spices, salty foods and acidic fruits, such as pineapple, grapefruit and oranges. Avoid any foods to which you're sensitive or allergic.
  • Choose healthy foods. To help prevent nutritional deficiencies, eat plenty of fruits, vegetables and whole grains.
  • Follow good oral hygiene habits. Regular brushing after meals and flossing once a day can keep your mouth clean and free of foods that might trigger a sore. Use a soft brush to help prevent irritation to delicate mouth tissues, and avoid toothpastes and mouth rinses that contain sodium lauryl sulfate.
  • Protect your mouth. If you have braces or other dental appliances, ask your dentist about orthodontic waxes to cover sharp edges.
  • Reduce your stress. If your canker sores seem to be related to stress, learn and use stress-reduction techniques, such as meditation and guided imagery.

Prevention of mouth ulcers

  • Brushing your teeth gently with a soft toothbrush, taking care not to slip with the brush.
  • Eating a well-balanced and nutritious diet.
  • Making sure that underlying medical conditions are well-controlled.
  • Keeping a healthy lifestyle, including appropriate nutrition, exercise, and rest, decreases the frequency of outbreaks.

Treatment options for mouth ulcers include:

  • Avoid spicy, salty and sour foods until the ulcers heal.
  • Drink plenty of fluids.
  • Keep your mouth clean.
  • Rinse your mouth out with warm, slightly salted water, keeping the rinse in your mouth for up to 4 minutes at a time. Repeat four times daily.
  • Use an alcohol-free medicated (preferably containing chlorhexidine gluconate) mouthwash twice daily.

Common Treatments for Aphthous Ulcers

Agent Dosage Evidence for use
Tetracycline capsule, 250 mg 1 capsule dissolved in 180 mL of water; rinse with this suspension four times daily for 4 to 5 days Randomized, controlled studies1 support use
Tetracycline syrup, 250 mg per 5 mL 5 mL “swish and spit” four times daily for 4 to 5 days As above
Minocycline tablet, 100 mg 1 tablet dissolved in 180 mL of water; rinse with this suspension twice daily for 4 to 5 days As above
Triamcinolone 0.1% in Orabase (Kenalog in Orabase) Apply to dried ulcer two to four times daily until healed Randomized, controlled studies1 show decreased pain
Dexamethasone elixir, 0.5 mg per 5 mL Swish and spit with 5 mL every 12 hours As above
Thalidomide 200 mg, one to two times daily for 3 to 8 weeks Warning: contraindicated in pregnancy Studies in HIV-infected patients only7
Amlexanox 5% paste Apply to dried ulcer two to four times daily Randomized, controlled studies9,10 show decreased symptoms and faster healing
Viscous lidocaine, 2% Apply to ulcer as needed For brief local pain relief only
Zinc lozenges Suck one lozenge four to six times daily No studies
Vitamin C, 500 mg One tablet, four times daily No studies
Vitamin B complex One tablet, four times daily No studies
l-Lysine, 500 mg One tablet, one to three times daily Studies in herpes only

Reference:

Cerumen

Cerumen is a Hydrophobic protective covering which protects ear canal from:

  • Water damage
  • Trauma
  • Foreign Bodies
  • Infection (intrinsic bactericidal activity)

Cerumen accumulation is usually asymptomatic, but can cause the following symptoms:

  • Hearing loss, Tinnitus
  • Earache, Ear fullness, Itchiness
  • Reflex cough
  • Dizziness

Reference:

Carbamide peroxide (Debrox)

I recommend using Debrox (Carbamide peroxide), which is over the counter without a prescription:

  • Use Debrox twice a day for up to 4 days as needed
  • For each use, approximately 5-10 drops should be placed in the affected ear(s)
  • It may make mild bubbling or crackling sounds, this is ok
  • Any earwax remaining after treatment may be removed by gently flushing the ear with warm water
  • Please refer to the package for complete directions

Chronic Rhinosinusitis

Diagnostic Criteria:

  • The presence of at least 2 of the following for 12 consecutive weeks (in order of frequency)
    • Nasal obstruction
    • Nasal drainage
    • Facial pain/pressure
    • Hyposmia/anosmia
  • Objective evidence on physical examination or radiology (Sinus CT) such as
    • Mucopurulent drainage
    • Edema
    • Polyps in middle meatus

Reference:

  • AFP Vol 96 No 8 Oct 2017

Hoarseness

Vocal quality vs diagnosis:

  • Breathy
    • Inflammatory arthritis
    • Spasmodic or functinoal dysphonia
    • Vocal fold mass
    • Vocal fold paralysis
  • Halting, stangled
    • Spasmodic dysphonia
  • Hoarse, husky, muffled, or nasal sounding
    • Parkinson disease
  • Hoarseness worse early in day
    • GERD
    • Laryngopharyngeal reflux (LPR)
  • Hoarseness worse later in day
    • Myasthenia gravis
    • Vocal abuse
  • Low pitched
    • GERD
    • Hypothyroidism
    • LPR
    • Leukoplakia
    • Muscle tension dysphonia
    • Reinke edema
    • Vocal fold edema
    • Age-related vocal atrophy in women
  • Raspy or harsh
    • GERD
    • LPR
    • Muscle tension dysphonia
    • Vocal fold lesion
  • Scanning speech and dysarthria
    • Multiple sclerosis
  • Soft (loss of volume)
    • Vocal fold paralysis
    • Parkinson disease
    • Age-related vocal atrophy
  • Spoken voice lost, but whispered maintained
    • Conversion aphonia
  • Strained
    • GERD
    • LPR
    • Muscle tension dysphonia
    • Spasmodic dysphonia
  • Strained, effortful phonation
    • Muscle tension dysphonia
  • Thick, deep voice and slowed speech
    • Acromegaly
  • Vocal fatigue
    • Muscle tension dysphonia
    • Myasthenia gravis
    • Parkinson disease
    • Vocal abuse
    • Age-related vocal atrophy

References:

  • AFP Vol 96 No 11 Dec 2017

Motion Sickness/Vestibular Nause

See also:

Scopolamine patch:

  • Apply 1 patch behind ear at least 4-12 hours (preferably 12 hr) before anticipated exposure to motion, then every 3 days as needed

Neti Pots

These devices all work in basically the same way:

  • Leaning over a sink, tilt your head sideways with your forehead and chin roughly level to avoid liquid flowing into your mouth.
  • Breathing through your open mouth, insert the spout of the saline-filled container into your upper nostril so that the liquid drains through the lower nostril.
  • Clear your nostrils. Then repeat the procedure, tilting your head sideways, on the other side.

To use and care for your device:

  • Wash and dry your hands.
  • Check that the device is clean and completely dry.
  • Prepare the saline rinse, either with the prepared mixture supplied with the device, or one you make yourself.
  • Follow the manufacturer’s directions for use.
  • Wash the device, and dry the inside with a paper towel or let it air dry between uses.

From:

Olfactory Training   edit

[2024-04-23 Tue 11:26]

See also:

Perform the following twice daily ideally before a meal for at least 4-6 months:

  • Use essential oils soaked in cotton, or liquid (50 ml) in an amber sniffing jar
  • Use the following recommended scents initially:
    • Rose
    • Eucalyptus
    • Lemon
    • Clove
  • Smell the first scent for 15-20 sec, while smelling, focus on what you remember it smelling like
  • Rest for 10 sec
  • Repeat as above for each scent separately
  • Every 1-3 months consider changing or adding scents such as:
    • Menthol
    • Thyme
    • Tangerine
    • Jasmine
    • Green tea
    • Bergamot
    • Rosemary
    • Gardenia

Reference:

  • AFP Sep 2023 Vol 108 No 3

Otitis Externa

(See My Formulary: Neomycin - polymyxin B - hydrocortisone otic 4 gtts tid)

  • Cortisporin otic 10 ml 4 drops in affected ear q6-8 hrs for 10 days

Medications:

  • 2% acetic acid solution - VoSol
    • With hydrocortisone (VoSoL HC Otic)
    • With aluminum acetate (Otic Domeboro)
    • Advantages
      • Generic product is inexpensive and effective against most infections without causing sensitization
    • Disadvantages
      • Can be irritating to inflamed external auditory canal; possibly ototoxic
  • Neomycin otic preparations
    • With polymyxin B–hydrocortisone (Cortisporin)
    • With hydrocortisone-thonzonium (Coly-Mycin S)
    • Advantages
      • Effective, and generic product is inexpensive
    • Disadvantages
      • Can be a potent sensitizer, causing contact dermatitis in 15% of patients; ototoxic
  • Polymyxin B - hydrocortisone (otobiotic)
    • Advantages
      • Avoids potential neomycin sensitization
    • Disadvantages
      • No activity against Staphylococcus and other gram-positive microorganisms
  • Aminoglycoside ophthalmic solutions
    • Gentamicin sulfate 0.3% (Garamycin)
    • Tobramycin sulfate 0.3% (Tobrex)
    • Advantages
      • Less locally irritating than 2% acetic acid solution, neomycin otic preparations or polymyxin B alone
    • Disadvantages
      • Potential ototoxicity; moderately expensive
  • Quinolone otic and ophthalmic solutions
    • Ofloxacin 0.3% solution (Floxin Otic)
    • Ciprofloxacin 0.3% and hydrocortisone suspension (Cipro HC Otic)
    • Ofloxacin 0.3% (Ocuflox)
    • Ciprofloxacin 0.3% (Ciloxan)
    • Advantages
      • Highly effective without causing local irritation or sensitization; no risk of ototoxicity; twice-daily dosing
    • Disadvantages
      • Expensive; increased community exposure of an important class of antibiotics, with potential for causing resistance

Patient Messaging: Protect ears during scuba diving

Before a dive:

  • Option: Put 2-3 drops of olive oil in your ear
  • Don't dive with any congestion

During a dive:

  • Don’t block your ears with earplugs or cotton
  • Equalize early and regularly
  • Descend feet first

After a dive:

  • Clean your ears with fresh water after every dive
  • Dry your ears with a towel after swimming, showering or diving. Tilting your head and pulling your earlobe in different directions while your ear is facing down might help eliminate water.
  • A hair dryer could be used to carefully dry the ear after a shower. Be careful to ensure the air is not too hot, hold it at least a foot (about 30 centimeters) away from the ear.
  • Refrain from putting objects (such as cotton swabs or ear wax removal tools) in the ear canal. This can cause ear wax (cerumen) impaction and can damage the skin in the ear, potentially increasing the risk of infection. Especially if there is any sand or salt in the canal.

Pulsatile Tinnitus

A steady rhythmic thumping, throbbing, creaking or whooshing sound in one or both ears.

Venous sinus stenosis/IIH is the most common cause of pulsatile tinnitus

Causes of pulsatile tinnitus include:

  • Atherosclerosis, which refers to hardening of the arteries. When plaque builds up and hardens, it reduces the blood flow through the body, including the ears, neck and head. This may cause the rhythmic whooshing or thumping sound in one or both ears
  • Blood vessel and artery disorders or malformations, especially near the ear. These include aneurysms and arteriovenous malformations
  • Ear abnormalities
  • Sinus wall abnormalities
  • Head and neck tumors
  • High blood pressure
  • Idiopathic intracranial hypertension, which can cause headaches, blurred vision, and pulsatile tinnitus
  • Anemia
  • Head trauma
  • Conductive hearing loss
  • Hyperthyroidism
  • Paget’s Disease

Imaging may include

  • temporal bone computerized tomography (CT) scan without contrast
  • CT angiography of head and neck
  • magnetic resonance angiography (MRA)
  • magnetic resonance imaging (MRI)
  • ultrasound

Labs:

  • Rule out anemia and hyperthyroidism

If no underlying cause is found -> coping tools used for tinnitus self-management are recommended:

  • sound therapy
  • lifestyle adjustments to reduce stress
  • cognitive behavioral therapy

References:

  • Am Fam Physician. 2021;103(11):663-671

Rhinitis

Allergic:

  • 15-30% of people in US
  • Coexists with asthma atopic dermatitis
  • Intranasal glucocorticoids are most effective; Alternatives include oral and nasal antihistamines and leukotriene-receptor antagonists
  • Those with refractory symptoms can consider allegen immunotherapy

Treatment:

  • Episodic symptoms:
    • Oral or nasal H1-antihistamine
    • +/- decongestant
  • Mild symptoms (seasonal):
    • Intranasal glucocorticoid
    • Oral or nasal H1-antihistamine
    • Leukotriene-receptor antagonist
  • Moderate-severe symptoms:
    • Intranasal glucocorticoid
    • Intranasal glucocorticoid and Oral or nasal H1-antihistamine
    • Allergen immunotherapy

For congestion that should work quickly:

  • Sudafed 30-60 mg every 4 hours
  • Astepro (azelastine) nasal spray

References:

  • NEJM 372;5 Jan 2015

Sinusitis

Acute Bacterial Sinusitis (see also in infectious diseases): Diagnosis:

  • Persistent symptoms
    • Nasal congestion, rhinorrhea, or cough for 10d or more without improvement
  • Severe symptoms
    • Temp over 38.5 for 3-4d
    • Purulent rhinorrhea for 3-4d
  • Worsening symptoms
    • Return of symptoms after initial resolution
    • New or recurrent fever, increase in rhinorrhea or cough

Treatment:

  • Amoxicillin-clavulanate is first line in children

Reference:

  • NEJM 367;12 Sep 2012

Chronic Sinusitis: Diagnosis:

  • 2 of the following for over 3mo: *must have one of these 2
    • *Nasal obstruction
    • *Nasal discharge (ant/post)
    • Facial pressure/pain
    • Smell reduced

Symptom criteria supported with one of the following:

  • Nasal polyps on ant rhinoscopy or nasal endoscopy
  • Edema or purulence
  • CT scan demonstrating paranasal sinus inflammation

Treatment:

  • 1st line: High-volume saline irrigation with topical corticosteroids
  • If nasal polyps: Can consider short course of systemic corticosteroids (1-3wks), doxycycline (3 wks), or a leukotriene antagonist
  • If no nasal polyps: Can consider prolonged course of a macrolide (3 mon)

Reference:

  • JAMA Sep 2015, Vol 314, No 9

Sore throat

Likely beneficial:

  • Corticosteroids (in those receiving antibiotics)
  • Acetaminophen - reduces pain at regular doses over 2 days

Trade-off between benefits/harm:

  • Antibiotics
  • NSAIDs - reduces pain at 2-5 days

Characteristics

  • Untreated symptoms of sore throat disappear by 3 days in 40% and untreated fevers in about 85%
  • 85% of persons are symptom free at 1 week

References:

  • AFP Vol 91 No 10 May 2015

Over the counter patient instructions:

  • Acetaminophen will help the most but takes 24hrs to notice. You could use 2 tabs every 6 hours safely.
  • Throat lozenges with "benzocaine" in them will help numb the area
  • Honey has evidence to work with sore throats - there are lozenges with honey in them as a different option
  • Cepacol spray (has benzocaine and glycerol) numbs the throat and can be used to help with sore throat.

Spots on Tongue   edit

[2023-09-18 Mon 09:38]

Table 59: Spots on Tongue
Condition What it looks like
Canker sores Yellow or white spots with red borders.
Cold sores Blisters or fluid-filled bumps, sometimes in clusters.
Geographic tongue Discolored, map-like spots that may have a light-colored border.
Transient lingual papillitis (Lie bumps) Small red or white bumps.
Oral thrush Raised, white areas that resemble cottage cheese.
Lichen planus White, lacy patches with possible redness and swelling.
Leukoplakia White patches that won’t scrape off.
Erythroplakia Red patched that won’t scrape off.
Tongue cancer Red or white patches, ulcers or open sores.

Healthy tongue:

  • Filiform: These are at the front and in the center of your tongue. Filiform papillae appear threadlike, and they don’t contain taste buds. You have more of this type of papillae than any other.
  • Fungiform: Most people have between 200 and 400 fungiform papillae. They’re all over your tongue, but they’re most prominent at the edges and tip of your tongue. Each fungiform papilla contains about three to five taste buds.
  • Foliate: These papillae are on each side of the back of your tongue. Unlike other papillae on your tongue, foliate papillae look like rough folds of tissue. You have approximately 20 foliate papillae, and each one contains several hundred taste buds.
  • Circumvallate: These are the largest type of papillae on your tongue. Found on the very back of your tongue, circumvallate papillae contain about 250 taste buds.

Temporomandibular joint dysfunction syndrome (TMJ) Pain   edit

[2024-01-18 Thu 09:48]

Medications:

  • NSAIDs
  • TCAs
  • If tenderness of the muscles of mastication - muscle relaxants:
    • Cyclobenzaprine 5 to 10 mg orally once daily at bedtime
    • Metaxalone 400 to 800 mg orally every eight hours

Therapy:

  • Isometric jaw exercises are particularly useful for patients with temporomandibular joint dysfunction syndrome. These exercises are performed by applying resistance with an open or loosely fisted hand.
  • Isometric jaw opening exercise:
    • Begin with mouth open about an inch. The resistance and muscle contraction are held for 5 to 10 seconds before relaxing.
    • Repeat 5 times per session.
    • Exercises can be performed with moderate resistance applied several sessions per day, or with maximum resistance one session per day.
  • Isometric jaw forward thrust exercise:
    • Push the jaw forward against the hand, holding and then relaxing. This is repeated 5 times per session.

Adjunctive therapy:

  • Dental mouth guard

Reference:

  • Up to Date

Patient Messaging: TMJ Therapy

For your TMJ pain:

We can use these medications:

  • NSAIDs like ibuprofen 400 mg every 4 hours

Physical Therapy:

  • Isometric jaw exercises are particularly useful for patients with temporomandibular joint dysfunction syndrome. These exercises are performed by applying resistance with an open or loosely fisted hand.
  • Isometric jaw opening exercise:
    • Begin with mouth open about an inch. The resistance and muscle contraction are held for 5 to 10 seconds before relaxing.
    • Repeat 5 times per session.
    • Exercises can be performed with moderate resistance applied several sessions per day, or with maximum resistance one session per day.
  • Isometric jaw forward thrust exercise:
    • Push the jaw forward against the hand, holding and then relaxing. This is repeated 5 times per session.

Adjunctive therapy:

  • Dental mouth guard

Tinnitis

Causes of Secondary Tinnitus

  • Infectious
    • Bacterial (Lyme disease, syphilis), fungal, viral
  • Metabolic
    • Diabetes mellitus, hyperlipidemia, vitamin B12 deficiency
  • Neurologic
    • Idiopathic intracranial hypertension, idiopathic stapedial or tensor tympani muscle spasm, multiple sclerosis, palatal myoclonus, spontaneous intracranial hypotension, type I Chiari malformation, vestibular migraine
  • Otologic
    • Cerumen impaction, cholesteatoma, foreign body, Meniere disease, middle ear effusion, otitis, otosclerosis, patulous eustachian tube, tympanic membrane perforation, vestibular schwannoma
  • Somatic
    • Head or neck injury, temporomandibular joint dysfunction
  • Toxicologic
    • Medication or substance use
  • Traumatic
    • Cerumen removal
  • Vascular
    • Arterial bruit; arteriovenous malformation; carotid atherosclerosis, dissection, or tortuosity; Paget disease; vascular tumors; venous hum

Medications Associated with Tinnitus

  • Anesthetics
    • Bupivacaine (Marcaine), lidocaine
  • Antiepileptics
    • Carbamazepine (Tegretol), pregabalin (Lyrica)
  • Anti-inflammatory agents
    • Aspirin,* nonsteroidal anti-inflammatory drugs, sulfasalazine (Azulfidine)
  • Antimalarial agents
    • Chloroquine (Aralen), quinine
  • Antimicrobial agents
    • Aminoglycosides
      • Amikacin, gentamicin, kanamycin, neomycin, tobramycin (Tobrex)
    • Macrolides
      • Azithromycin (Zithromax), erythromycin
    • Tetracyclines
      • Doxycycline, minocycline (Minocin)
    • Vancomycin
  • Antineoplastic agents
    • Platinum compounds
      • Carboplatin (Paraplatin), cisplatin
    • Protein kinase inhibitors
      • Axitinib (Inlyta), dasatinib (Sprycel), imatinib (Gleevec), lapatinib (Tykerb), osimertinib (Tagrisso), ruxolitinib (Jakafi)
    • Pyrimidine analogues
      • Capecitabine (Xeloda)
    • Taxanes
      • Paclitaxel (Taxol)
  • Antivirals for treatment of hepatitis C virus infections
    • Ribavirin (Rebetol), sofosbuvir (Sovaldi), telaprevir (Incivek)
  • Immunosuppressants
    • Calcineurin inhibitors
      • Cyclosporine (Sandimmune)
    • Interferons
    • Monoclonal antibodies
      • Ipilimumab (Yervoy), nivolumab (Opdivo), trastuzumab (Herceptin)
  • Loop diuretics
    • Furosemide (Lasix), torsemide (Demadex)
  • Paralytics (for anesthesia)
    • Quaternary ammonium compounds
      • Vecuronium
  • Phosphodiesterase type 5 inhibitors
    • Sildenafil (Viagra), tadalafil (Cialis)
  • Vaccinations
    • HPV
      • Bivalent (HPV-16, HPV-18); quadrivalent (HPV-6, HPV-11, HPV-16, HPV-18)
      • Pneumococcal polysaccharide (Pneumovax)
  • Miscellaneous
    • Atorvastatin (Lipitor), bupropion (Wellbutrin), risedronate (Actonel), varenicline (Chantix)
    • Antiarrhythmics, dopamine agonists, hormone agents, proton pump inhibitors

Tinnitus Presentation:

  • Pulsitile tinnitus:
    • Temporal bone CT without contrast or CT Angio of head and neck
  • Focal neurologic abnormaliteis
    • Refer to ER
  • Asymmetric or unilateral tinnitus
    • MRI of head and auditory canal with and without contrast
  • Asymmetric hearing loss
    • MRI of head and auditory canal with and without contrast
  • Associated with hearing changes
    • Prmpt audologic evaluation (within 4 weeks)
  • Not Bothersome tinnitus
    • History: focus on noise exposure, ototoxic meds, and medical conditions
    • Anticipatory guidance and prevention
    • Consider audiologic evaluation
  • Acute Bothersome tinnitus
    • History: Focus on recent exposure to loud noise, trauma, ototoxic meds, and infectious symptoms
    • PE: Signs of trauma, canal blockage, cranial nerve abnormalities
    • Consider audiologic evaluation
    • If signs of trauma - Perform imaging
    • If CN abnormalities - refer to ER for urgent imaging and neurological care
  • Chronic Bothersome tinnitus (>6mo)
    • Perform H&P
    • Prompt audiologic evaluation (within 4 wks)

Treatments to consider for tinnitus

  • Cognitive behavior therapy (moderate- to high-quality evidence)
  • Sound therapy (low-quality evidence)
    • Acoustic stimulation
    • Hearing aids
    • Sound/noise generation
  • Tinnitus retraining therapy (very low-quality evidence)

Treatments to consider for tinnitus-associated conditions:

  • Antidepressants
    • Nortriptyline (Pamelor; depression)
    • Sertraline (Zoloft; anxiety)
    • Trazodone (sleep disturbance)
    • Tricyclic antidepressants (disability)
  • Cognitive training (attention, concentration, memory)
  • Melatonin (sleep disturbance)

Treatments to avoid

  • Benzodiazepines
    • Clonazepam (Klonopin)
  • Anticonvulsants
    • Acamprosate (Campral)
    • Carbamazepine (Tegretol)
    • Gabapentin (Neurontin)
    • Lamotrigine (Lamictal)
  • Repetitive transcranial magnetic stimulation
  • Electrical stimulation
    • Transcranial direct current stimulation
    • Transcutaneous electrical nerve stimulation
  • Bimodal stimulation
  • Microvascular decompression (surgical procedure)
  • Ginkgo biloba
  • Nitrous oxide
  • Hyperbaric oxygen
  • Acupuncture

Reference:

  • AFP Jun 2021 Vol 103 No 11

Gastroenterology

Antiemetics Selection

Table 60: Antiemetics
Clinical Situation Associated Neurotransmitters Recommended Antiemetic
Vestibular nausea/Motion Sickness Histamine, acetylcholine Meclizine, scopolamine
Migraine-associated Dopamine Metoclopramide, prochlorperazine, promethazine
Gastroenteritis Dopamine, serotonin Promethazine, Serotonin antagonists
Pregnancy-induced Unknown Mild: Ginger 250mg ac/qhs; Pyridoxine
    More Severe: Ondansetron

References:

  • AFP Vol 91, No 5 Mar 2015
  • AFP Vol 76 No 1 Jul 2007

Barrett Esophagus

Risk factors (If chronic GERD 5+ yrs and 1+ risk factor -> Endoscopy):

  • Male
  • Age >50
  • Smoking
  • Obesity
  • Diet high in fast food and meat

Nondysplastic Barrett Esophagus

  • Risk of progression to adenocarcinoma: 0.2-0.5% annually
  • Surveillance
    • If BE length 3+ cm: Every 3 years
    • If BE length 1-3 cm: Every 5 years

Low Grade Dysplasia (LGD)

  • Risk of progression to adenocarcinoma: 0.5-0.7% annually
  • Surveillance if no risk factors:
    • Every 1 year
  • If 1+ risk factors
    • RF including:
      • Multifocal LGD
      • LGD confirmed on subsequent EGD
      • BE length 3+ cm
      • Family history of esophageal adenocarcinoma
    • Endoscopic therapy:
      • Endoscopic mucosal resection or submucosal dissection followed by endoscopic ablative therapy OR
      • Endoscopic ablative therapy alone for patients without any lesions

High Grade Dysplasia/Early Esophageal Adenocarcinoma

  • Risk of progression to adenocarcinoma (HGD): 5-7% annually
  • Endoscopic therapy:
    • Endoscopic mucosal resection or submucosal dissection followed by endoscopic ablative therapy OR
    • Endoscopic ablative therapy alone for patients without any lesions

References:

  • JAMA Aug 2022 Vol 328 No 7

Bowel cleansing

[2024-08-09 Fri 10:51]

Prep ingredients:

  • 64-ounces of the following electrolyte beverages Gatorade, Gatorade G2, Powerade, Powerade Zero, Pedialyte, Propel, or Liquid IV are acceptable with no red or purple colors.
  • Miralax: One 8.3-ounce (238 grams, 14 dose) bottle. Generic brand is OK.
  • Dulcolax® (bisacodyl): Four 5-mg laxative tablets.
  • Consider purchasing soothing wipes and barrier cream, such as A+D Ointment® , to help with anal irritation. Do not use Desitin® .

Evening before Prep:

  • Mix 2 quarts (64 ounces) Gatorade with entire 8.3-ounce bottle of Miralax and refrigerate.

Common Side Effects

  • Chills, bloating, cramping, nausea and vomiting may occur. If so, take a break from drinking the prep for 30 minutes. Resume drinking, taking breaks as needed.
  • A bowel movement will usually occur within an hour after the first glass of the Gatorade-Miralax mixture. Don’t worry if this doesn’t happen for three or four hours. Everyone is different.
  • Bowel movements will occur that are watery and frequent until the bowel is fully cleansed. The end result should be clear or pale yellow liquid.

Instructions

  • Day before Procedure:
    • At 9 a.m., take four tablets of Bisacodyl/Dulcolax. You will want have access to a bathroom after taking the
    • tablets.
    • Mix the Miralax (entire bottle) with 64 ounces of the electrolyte beverage until it is all dissolved. You can put the mixture in the refrigerator.
    • If you would prefer to drink the prep at room temperature, you may take it out of the fridge at 4 p.m.
    • Do not add ice, sugar, or any other flavorings to the bowel preparation
    • At 6 p.m., start drinking your prep mixture. You will drink half (32 ounces) of the prep mixture. Try to drink an eight-ounce glass of the prep mixture every 15 minutes. It will take you one hour to finish drinking it.
    • Some people may feel nauseous, bloated, or vomit. If this happens, take a 15-30-minute break, and then try drinking the prep mixture.
    • You will need to be near a bathroom once you start drinking your prep mixture. You will have diarrhea and will need to be able to reach a bathroom quickly.
    • After you finish the prep mixture, you may drink clear liquids only.
    • Store the remaining 32 ounces of the prep mixture in the refrigerator for the next morning. The day of your procedure
  • Procedure Day
    • Five hours before your check-in time start drinking the remaining 32 ounces of the prep mixture. Try to drink an eight-ounce glass of the prep mixture every 15-minutes until the bowel preparation is finished. It will take you one hour to finish drinking it.
  • Notes:
    • You will need to be near a bathroom once you start drinking your prep mixture. You will have diarrhea and will need to be able to reach a bathroom quickly.
    • Some people may feel nauseous, bloated, or may vomit while drinking the bowel preparation. If this happens, take a 15-minute break, and then try drinking the prep mixture.
    • Your stool should be no longer formed, but a clear or yellow liquid.
    • You may drink clear liquids until two hours before your check-in time.

Bowel Medicines

However, before turning to laxatives, try these lifestyle changes to help with constipation:

  • Eat fiber-rich foods: wheat bran, fresh fruits and vegetables, and oats
  • Drink plenty of fluids daily
  • Exercise regularly
Table 61: Laxatives
Type of laxative (brand examples) How they work Side effects
Oral osmotics (Phillips' Milk of Magnesia, Miralax) Draw water into the colon to allow easier passage of stool Bloating, cramping, diarrhea, nausea, gas, increased thirst
Oral bulk formers (Benefiber, Citrucel, FiberCon, Metamucil) Absorb water to form soft, bulky stool, prompting normal contraction of intestinal muscles Bloating, gas, cramping or increased constipation if not taken with enough water
Oral stool softeners (Colace, Surfak) Add moisture to stool to allow strain-free bowel movements Electrolyte imbalance with prolonged use
Oral stimulants (Dulcolax, Senokot) Trigger rhythmic contractions of intestinal muscles to eliminate stool Belching, cramping, diarrhea, nausea, urine discoloration with senna and cascara derivatives
Rectal suppositories (Dulcolax, Pedia-Lax) Trigger rhythmic contractions of intestinal muscles and soften stool Rectal irritation, diarrhea, cramping

Celiac Sprue/Gluten Insensitivity   edit

[2024-03-27 Wed 09:46]

Testing:

  • Serum tissue transglutaminase (tTG)-immunoglobulin A (IgA)
    • Follow up a positive with endoscopy/biopsy
    • Can be negative if gluten free diet
    • More specific/More $$$: endomysial (EMA)-IgA antibody tests

Reference:

  • Uptodate

Gluten Free Diet Fundamentals

Grains that should be avoided

  • Barley (includes malt)
  • Rye
  • Wheat

Safe grains

  • Amaranth
  • Buckwheat
  • Corn
  • Millet
  • Oats
  • Quinoa
  • Rice
  • Sorghum
  • Teff

Sources of gluten-free starches to be used as flour alternatives

  • Cereal grains (amaranth, buckwheat, corn, millet, quinoa, sorghum, teff, rice, montina)
  • Legumes (chickpeas, kidney beans, lentils, navy beans, pea beans, peanuts, soybeans)
  • Nuts (almonds, cashews, chestnuts, hazelnuts, walnuts)
  • Seeds (flax, pumpkin, sunflower)
  • Tubers (arrowroot, jicama, potato, tapioca, taro)

References:

  • AFP Vol 89 No 2 Jan 2014

Cirrhosis

  • Modality of choice = US
  • Endoscopy all patients with cirrhosis to check for varices (LOE C)

References:

  • FMX 2016

Ascites treatment

  • Dietary Na restriction (<2g/d)
  • Avoid NSAIDs
  • Goal is weight loss of 0.5Kg/d
  • Diuretics:
    • Spironolactone
      • Start at 100mg/d
      • Increase to 200mg
      • Takes 3-7 days to full effect
      • Watch for hyponatremia, hypokalemia, alkalosis, and gynecomastia
    • Loop

Ref: FMX 2016

Acute variceal hemorrhage

  • Each episode has 30% mortality rate
  • Survivors have 50-70% recurrence rate in 1yr

Ref: FMX 2016

Colonoscopy

Key Points

  • Adenomas on initial colonoscopy affect ongoing follow-up screening recommendations.
  • A single normal colonoscopy demonstrates a lifetime CRC mortality risk 68% lower than in the general population.
  • Finding more than 10 adenomas confers the highest risk, and repeat colonoscopy is recommended in one year.
  • Finding polyps larger than 10 mm, between five and 10 sessile serrated polyps or adenomas, polyps with dysplasia, or traditional serrated adenomas confers high risk, and repeat colonoscopy is recommended in three years.

Common findings on colonoscopy reports include adenomas and polyps. Instead of defining high- and low-risk findings, task force recommendations depend on the number and size of findings.

Initial colonoscopy finding Follow-up interval, years Follow-up colonoscopy finding Follow-up interval, years
Normal (no polyps) 10
Traditional adenomas      
Tubular adenomas < 10 mm      
1 to 2 7 to 10 Normal 10
    Tubular adenomas < 10 mm  
    1 to 2 7 to 10
    3 to 4 3 to 5
    5 to 10 3
    High-risk adenoma 3
3 to 4 3 to 5 Normal 10
    Tubular adenomas < 10 mm  
    1 to 2 7 to 10
    3 to 4 3 to 5
    5 to 10 3
    High-risk adenoma 3
5 to 10 3 No evidence available
High-risk adenoma ? 10 mm or villous or tubulovillous histology, or high-grade dysplasia 3 Normal 5
    Tubular adenomas < 10 mm  
    1 to 2 5
    3 to 4 3 to 5
    5 to 10 3
    High-risk adenoma 3
> 10 1 No evidence available
Serrated polyps      
Sessile serrated polyps < 10 mm      
1 to 2 5 to 10 No evidence available
3 to 4 3 to 5 No evidence available
5 to 10 3 No evidence available
High-risk sessile serrated polyp ? 10 mm or dysplasia 3 No evidence available
Hyperplastic polyps      
Up to 20 polyps < 10 mm 10 No evidence available
Any polyps ? 10 mm 3 to 5 No evidence available
Traditional serrated adenoma 3 No evidence available

References:

  • AFP Col 103 No 5 Mar 2021

Colorectal Cancer Screening

The U.S. Preventive Services Task Force recommends that adults at average risk (those who do not have a personal or family history of CRC or polyps, do not have inflammatory bowel disease, or a history of genetic syndromes associated with CRC) aged 50–75 years be screened for CRC by any of six available tests:

  1. Fecal occult blood test (FOBT)
  2. Fecal immunochemical test (FIT)
  3. Multitarget stool DNA (FIT-DNA)
  4. Computed tomographic colonography (CTC)
  5. Sigmoidoscopy
  6. Colonoscopy

Screen all adults ages 45-75yo

Table 62: Screening strategies:
Test Interval Example
High-sensitivity guaiac fecal occult blood test (HSgFOBT) Annually  
Fecal Globin Immunochemical test (FIT) Annually Quest 11290
Stool DNA-FIT 1-3 yrs Cologuard
Computer tomography colonography 5 yrs  
Flexible sigmoidoscopy 5 yrs  
Flexible sigmoidoscopy + Annual FIT 10 yrs  
Colonoscopy 10 yrs  

Strong evidence exists that screening for CRC reduces incidence and mortality.

The best test is the one that a person is willing to get. CRCCP grantees use only screening tests recommended by the United States Preventive Services Task Force (USPSTF). Those options include:

  • At-home stool tests
    • High-sensitivity guaiac fecal occult blood test (FOBT) every year.
    • High-sensitivity fecal immunochemical test (FIT) every year.
  • Tests performed in clinics
    • Colonoscopy every 10 years.
    • Sigmoidoscopy every 5 years, with FOBT or FIT every 3 years.

References:

USPSTF Colon Cancer Screening

Recommendation Summary

Population Recommendation Grade
Adults ages 50 to 75 years The USPSTF recommends screening for colorectal cancer in all adults ages 50 to 75 years. A
Adults ages 45 to 49 years The USPSTF recommends screening for colorectal cancer in adults ages 45 to 49 years. B
Adults ages 76 to 85 years The USPSTF recommends that clinicians selectively offer screening for colorectal cancer in adults ages 76 to 85 years. Evidence indicates that the net benefit of screening all persons in this age group is small. In determining whether this service is appropriate in individual cases, patients and clinicians should consider the patient's overall health and prior screening history. C
Table 63: Stool-Based Tests
Screening Method Frequency Evidence of Efficacy Other Considerations
gFOBT Every year RCTs with mortality end points: High-sensitivity versions (eg, Hemoccult SENSA) have superior test performance characteristics than older tests (eg, Hemoccult II) Does not require bowel preparation, anesthesia, or transportation to and from the screening examination (test is performed at home)
FIT Every year Test characteristic studies: Improved accuracy compared with gFOBT; Can be done with a single specimen Does not require bowel preparation, anesthesia, or transportation to and from the screening examination (test is performed at home)
FIT-DNA Every 1 or 3 y Test characteristic studies: Specificity is lower than for FIT, resulting in more false-positive results, more diagnostic colonoscopies, and more associated adverse events per screening test; Improved sensitivity compared with FIT per single screening test There is insufficient evidence about appropriate longitudinal follow-up of abnormal findings after a negative diagnostic colonoscopy; may potentially lead to overly intensive surveillance due to provider and patient concerns over the genetic component of the test
Table 64: Direct Visualization Tests
Screening Method Frequency Evidence of Efficacy Other Considerations
Colonoscopy Every 10 y Prospective cohort study with mortality end point Requires less frequent screening. Screening and diagnostic followup of positive results can be performed during the same examination.
CT colonography Every 5 y Test characteristic studies There is insufficient evidence about the potential harms of associated extracolonic findings, which are common
Flexible sigmoidoscopy Every 5 y RCTs with mortality end points: Modeling suggests it provides less benefit than when combined with FIT or compared with other strategies Test availability has declined in the United States
Flexible sigmoidoscopy with FIT Flexible sigmoidoscopy every 10 y plus FIT every year RCT with mortality end point (subgroup analysis) Test availability has declined in the United States; Potentially attractive option for patients who want endoscopic screening but want to limit exposure to colonoscopy

Reference:

Colonoscopy Surveillance

Table 65: Recommendations for Colonoscopy Based on the Presence or Absence of Adenomatous Polyps
Baseline colonoscopy: Most Advanced Finding(s) Recommended surveillance interval (y)
No polyps 10
Small (<10 mm) hyperplastic polyps in rectum or sigmoid 10
1-2 Small (<10 mm) tubular adenomas 5-10
3-10 Tubular adenomas 3
>10 Adenomas <3
Any adenoma ≥10 mm 3
Any adenoma with villous elements (villous or tubulovillous) or with high-grade dysplasia 3
Table 66: Recommendations for Colonoscopy Based on the Presence of Serrated Polyps
Baseline colonoscopy: Most Advanced Finding(s) Recommended surveillance interval (y)
Sessile serrated adenoma/polyp(s) <10 mm with no dysplasia 5
Sessile serrated adenoma/polyp(s) ≥10 mm 3
Sessile serrated adenoma/polyp with dysplasia 3
Traditional serrated adenoma 3
Serrated polyposis syndrome (see text) 1

References:

  • Lieberman D.A., Rex D.K., Winawer S.J., Giardiello F.M., Johnson D.A., Levin T.R. United States Multi-Society Task Force on Colorectal Cancer

Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2012; 143: 844-857

Followup colonoscopy recommendations

  • Repeat colonoscopcy is recommended 7-10 yrs after complete removal of 1 to 2 tubular adenomas smaller than 10 mm (Strong rec; Mod QOE)
  • Repeat colonoscopcy is recommended 3-5 yrs after complete removal of 3 to 4 tubular adenomas smaller than 10 mm (Weak rec; Very low QOE)
  • Repeat colonoscopcy is recommended 3 yrs after complete removal of 5 to 10 adenomas smaller than 10 mm (Strong rec; Mod QOE)
  • Repeat colonoscopcy is recommended 3 yrs after complete removal of 1 or more adenomas 10 mm or larger (Stron rec; High QOE)
  • Repeat colonoscopcy is recommended 6 months after piecemeal resection of an adenoma or sessile serrated polyp 20 mm or larger (Strong rec; Mod QOE)

References:

  • JAMA Dec 2020 Vol 324, No 21

Constipation

Also see: Constipation in Elderly

Treatment for chronic idiopathic constipation:

  1. Increase dietary fiber and/or bulking agent
  2. PEG 3350 (osmotic laxative) or stimulant (bisacodyl or senna)
  3. Secretory agent (linaclotide or lubiprostone)
  4. Refer

Agents:

  • Bulk Agents
    • Psyllium (10g daily), methylcelluose, calcium polycarbophil, wheat dextrin
      • Recommendation: Strong
      • Quality of evidence: Low
    • Polycarbophil
      • 1.25g 1-4x/d max 5g/d
      • Soluble fiber
    • Methylcellulose powder
      • 2g/d
      • Insoluble fiber
  • Nonabsorbed substances
    • PEG 3350 (17 g daily) (osmotic)
      • Recommendation: Strong
      • Quality of evidence: High
    • Lactulose (20 g daily) (osmotic)
      • 15 - 30 ml/d
      • Recommendation: Strong
      • Quality of evidence: Low
  • Stimulants
    • Senna (17 mg daily)
    • Bisacodyl (10mg daily)
      • Recommendation: Strong
      • Quality of evidence: Moderate
  • Secretory
    • Lubiprostone, Linaclotide
    • Recommendation: Strong
    • Quality of evidence: High
  • PAMORAs (Peripheral mu-opioid antagonists)
    • Naldemedine
    • Naloxegol
    • Methylnaltrexone

Other notes:

  • PEG 3350 (17 g daily) (Miralax) is preferred over lactulose as more effective and fewer adverse effects (LOE A)
  • Pelvic florr therapy with biofeedback is superior to laxatives, sham, and placebo in RCTS for defecatory dysfunction (LOE B)

References:

  • JAMA Vol 315 No 2 Jan 2016
  • JAMA Vol 322 No 22 Dec 2019

Over the counter managment of constipation

Here is a link to what I suggest to help with gastroparesis:

  1. Senna 9-17 mg/day: https://amzn.to/39xrZVz
  2. Psyllium 500-1000 mg/day: https://amzn.to/3HzUwpX
  3. You can also use Magnesium Oxide 400 to 800 mg daily

Also, continue to:

  • Drink a lot of water
  • Eat grapes and prunes
  • Stay active and exercise as you are able

Secondary Causes

Mechanical:

  • Colorectal cancer
  • Colon, rectal, or anal stricture
  • Rectocele
  • Intestinal pseudo-obstrution
  • Megacolon

Neurologic Disease:

  • Spinal cord lesion
  • Stroke
  • Parkinson disease
  • Multiple sclerosis

Metabolic Disturbances:

  • Hypercalcemia
  • Hypokalemia
  • Hypomagnesemia
  • Hypothyroidism (severe)
  • Uremia

Medications:

  • Opiates
  • Anticholinergics
  • CCBs
  • Anticonvulsants
  • Antispasmodics
  • Antihistamines
  • Antiemetics

Miscellaneous:

  • Amyloidosis
  • Scleroderma
  • Heavy metal poisoning

References:

  • JAMA Vol 315 No 2 Jan 2016

Study: The effect of food, vitamin, or mineral supplements on chronic constipation in adults: A systematic review and meta-analysis of randomized controlled trials

Background:

  • Over-the-counter supplements are commonly used to manage chronic constipation; however, their efficacy remains unclear. We aimed to investigate the effect of food, vitamin or mineral supplements on stool output, gut transit time, symptoms, and quality of life in adults with chronic constipation via a systematic review and meta-analysis of randomized controlled trials (RCTs).

Methods:

  • Studies were identified using electronic databases, backward citation, and hand-searching abstracts. RCTs reporting administration of food supplements (e.g., fruit extract supplements), vitamin or mineral supplements in adults with chronic constipation were included. Studies administering whole foods (e.g., fruits) were excluded. Risk of bias (RoB) was assessed with Cochrane RoB 2.0. Relative risks (RR), mean differences (MD), or standardized mean differences (95% confidence intervals [CI]) were calculated using a random-effects model.

Key results:

  • Eight RCTs (787 participants) were included, investigating:
    • kiwifruit (n = 3 RCTs)
    • senna (n = 2)
    • magnesium oxide (n = 2)
    • Ziziphus jujuba (n = 1)
    • Malva Sylvestris (n = 1) supplements
  • Kiwifruit supplements did not impact stool frequency (MD 0.24 bowel movements/week [-0.32, 0.80]; p = 0.40) or consistency (MD -0.11 Bristol points [-0.31, 0.09], p = 0.29).
  • Overall, 61% responded to senna and 28% to control; however, this did not reach statistical significance (RR 2.78, [0.93, 8.27]; p = 0.07).
  • Overall, 68% responded to magnesium oxide and 19% to control (RR 3.32 [1.59, 6.92]; p = 0.001).
  • Magnesium oxide improved stool frequency (MD 3.72 bowel movements/week [1.41, 6.03]; p = 0.002) and consistency (MD 1.14 Bristol points [0.48, 1.79]; p = 0.0007).

Conclusions and inferences:

  • Magnesium oxide supplements are effective at improving cardinal symptoms of chronic constipation.
  • Senna and kiwifruit supplements did not impact symptoms; however, findings were based on a small number of studies. Further research is required to investigate the effect of food supplements (e.g., kiwifruit supplements), as well as their whole food equivalents (e.g., whole kiwifruits) in chronic constipation.

Reference:

Diarrhea

Definition: passage of 3+ unformed stools/day or passage of 250g of unformed stool/day

  • Acute: (<14d)
  • Persistent (14-29d)
  • Chronic (>30d)

Labs:

  • Electrolytes and Serum creatinine - in pts with systemic toxicity or dehydration (especially elderly or infirm patients)
  • CBC - in pts with severe diarrhea and fever or toxicity (looking for left shift of neutrophils for C difficile or eosinophilia in parasitic infections)
  • Stool samples - in pts where acute diarrhea is severe, associated with fever or severe coexisting condition in a hospitalized pt, persistent diarrhea, profuse cholera-like watery diarrhea, dehydration, and dysentery)

Differential:

  • Shigellosis
    • Dx with stool culture
    • Treat with Cipro 750mg daily for 3d or azithro 500mg for 3d
  • Salmonellosis
    • Dx with stool culture
  • Intestinal campylobacteriosis
    • Dx with stool culture
    • Treat with azithro 500mg for 3d
  • Infection with Shiga toxin producing E coli
    • Dx with stool culture on Sorbitol-MacConkey agar
    • Treat with supportive care
  • Noncholeraic vibrio diarrhea
    • Dx with stool culture with TCBS medium
    • Treat with Cipro 750mg daily for 3d or azithro 500mg for 3d
  • Vibrio cholerae
    • Dx with stool culture with TCBS medium
    • Treat with doxycycline 300mg single dose
  • Clostridium difficile
  • Travelors diarrhea and enterotoxigenic E coli
    • For pts with fever or dysentery: Treat with azithro 1000mg single dose
    • For pts without fever or dysentery: Treat with rifaximin 200mg 3/d for 3d; or cipro 500mg bid or 750mg daily for 1-3d
  • Norovirus
    • Treat with fluid and electrolyte therapy
  • Rotavirus
    • Treat with fluid and electrolyte therapy
  • Enteric adenoviruses
    • Treat with fluid and electrolyte therapy
  • Giardiasis
    • Dx with enzyme immunoassay or light microscopic exam of stool
    • Treat with tinidazole 2g single dose, metronidazole 250mg 3/d for 5-7d
  • Celiac disease
    • Dx: Immunoglobulin A antiendomysium and antitissue transglutaminase antibodies
  • Drug-induced diarrhea
  • Endocrine diarrhea
    • Dx: TSH, serum peptide concentrations, urinary histamine level
  • Inflammatory bowel disease
    • Dx: CBC, fecal leukocytes, ESR, fecal calprotectin
  • Irritable Bowel Syndrome
  • Ischemic colitis
  • Microscopic colitis

Ref:

  • NEJM 370;16 Apr 2014
  • AFP Vol 84 No 10 Nov 2011

Chronic Diarrhea

Defined as: A decrease in stool consistency for more than 4 weeks.

Consider 3 basic categories:

  1. Watery
    1. Secretory type - often nocturnal; unrelated to food intake; fecal osmotic gap < 50 mOsm per kg
      1. Alcoholism
      2. Bacterial enterotoxins (like cholera)
      3. Bile acid malabsorption
      4. Brainerd diarrhea (epidemic secretory diarrhea)
      5. Congenital syndromes
      6. Crohn disease (early ileocolitis)
      7. Endocrine disorders (like hyperthyroidism [increases motility])
      8. Medications
      9. Microscopic colitis (lymphocytic and collagenous subtypes) - often affects older persons
      10. Neuroendocrine tumors (like gastrinoma, vipoma, carcinoid tumors, mastocytosis)
      11. Nonosmotic laxatives (like senna, docusate sodium [Colace])
      12. Postsurgical (like cholecystectomy, gastrectomy, vagotomy, intestinal resection)
      13. Vasculitis
    2. Osmotic type - fecal osmotic gap > 125 mOsm per kg
      1. Carbohydrate malabsorption syndromes (like lactose, fructose)
      2. Celiac disease
      3. Osmotic laxatives and antacids (like magnesium, phosphate, sulfate)
      4. Sugar alcohols (like mannitol, sorbitol, xylitol)
    3. Functional type - distinguished from secretory types by hypermotility, smaller volumes, and improvement at night and with fasting
      1. Irritable bowel syndrome = most common cause of functional diarrhea.
  2. Fatty (malabsorption) - bloating and steatorrhea most of the time
    1. Characterized by:
      1. Excess gas
      2. Steatorrhea
      3. Weight loss
    2. Malabsorption syndrome - damage to or loss of absorptive ability
      1. Amyloidosis
      2. Carbohydrate malabsorption (like lactose intolerance)
      3. Celiac sprue (gluten enteropathy) - Can result in weight loss and iron deficiency anemia
      4. Gastric bypass
      5. Lymphatic damage (like congestive heart failure, some lymphomas)
      6. Medications (like orlistat [Xenical; inhibits fat absorption], acarbose [Precose; inhibits carbohydrate absorption])
      7. Mesenteric ischemia
      8. Noninvasive small bowel parasite (like Giardiasis)
      9. Postresection diarrhea
      10. Short bowel syndrome
      11. Small bowel bacterial overgrowth (> 105 bacteria per mL)
      12. Tropical sprue
      13. Whipple disease (Tropheryma whippelii infection)
    3. Maldigestion - loss of digestive function
      1. Hepatobiliary disorders
      2. Inadequate luminal bile acid
      3. Loss of regulated gastric emptying
      4. Pancreatic exocrine insufficiency
  3. Inflammatory - Inflammatory or exudative (elevated white blood cell count, occult or frank blood or pus)
    1. Inflammatory bowel disease Crohn disease (ileal or early Crohn disease may be secretory)
    2. Ulcerative colitis

      1. Ulcerative colitis or Crohn disease can be characterized by:
      1. Blood and pus in the stool
      2. Elevated fecal calprotectin level
    3. Diverticulitis
    4. Ulcerative jejunoileitis
    5. Invasive infectious diseases
      1. Clostridium difficile (pseudomembranous) colitis–antibiotic history
      2. Invasive bacterial infections (like tuberculosis, yersiniosis)
      3. Invasive parasitic infections (like Entamoeba)–travel history
      4. Ulcerating viral infections (like cytomegalovirus, herpes simplex virus)
    6. Neoplasia
      1. Colon carcinoma
      2. Lymphoma
      3. Villous adenocarcinoma
    7. Radiation colitis

Fecal osmotic gap

  • Fecal osmotic gap = 290 – 2 × (stool sodium + stool potassium)
  • Differentiates secretory from osmotic diarrhea
  • Normal fecal osmolality = 290 mOsm per kg (290 mmol per kg)

Laboratory Workup:

  • Complete blood count
  • Albumin level
  • Erythrocyte sedimentation rate
  • Liver function testing
  • Thyroid-stimulating hormone level
  • Electrolyte levels
  • A minimal stool assessment should include:
    • Fecal leukocyte level
    • Fecal occult blood test
    • If indicated:
      • Fecal calprotectin for IBD
      • Stool laxative screen
      • Fecal pH test (if <5.5, could be lactose intolerance)
      • Stool ova and parasite

References:

  • Am Fam Physician. 2011 Nov 15;84(10):1119-1126.
  • AFP Vol 101 No 8 Apr 2020
  • Common Causes of Chronic Diarrhea
    • Celiac disease
      • Clinical findings
        • Chronic malabsorptive diarrhea, fatigue, iron deficiency anemia, weight loss, dermatitis herpetiformis, family history
      • Tests
        • Immunoglobulin A antiendomysium and antitissue transglutaminase antibodies most accurate; duodenal biopsy is definitive
    • Clostridium difficile infection
      • Clinical findings
        • Often florid inflammatory diarrhea with weight loss
        • Recent history of antibiotic use, evidence of colitis, fever
        • May not resolve with discontinuation of antibiotics
      • Tests
        • Fecal leukocyte level; enzyme immunoassay that detects toxins A and B; positive fecal toxin assay; sigmoidoscopy demonstrating pseudomembranes
    • Drug-induced diarrhea
      • Clinical findings
        • Osmotic (e.g., magnesium, phosphates, sulfates, sorbitol)
        • Hypermotility (stimulant laxatives)
        • Malabsorption (e.g., acarbose [Precose], orlistat [Xenical])
      • Tests
        • Elimination of offending agent; always consider laxative abuse
    • Endocrine diarrhea
      • Clinical findings
        • Secretory diarrhea or increased motility (hyperthyroidism)
      • Tests
        • Thyroid-stimulating hormone level, serum peptide concentrations, urinary histamine level
    • Giardiasis
      • Clinical findings
        • Excess gas, steatorrhea (malabsorption)
      • Tests
        • Giardia fecal antigen test
    • Infectious enteritis or colitis (diarrhea not associated with C. difficile): bacterial gastroenteritis, viral gastroenteritis, amebic dysentery
      • Clinical findings
        • Inflammatory diarrhea, nausea, vomiting, fever, abdominal pain
        • History of travel, camping, infectious contacts, or day care attendance
      • Tests
        • Fecal leukocyte level, elevated erythrocyte sedimentation rate
        • Cultures or stained fecal smears for specific organisms are more definitive
    • Inflammatory bowel disease: Crohn disease, ulcerative colitis
      • Clinical findings
        • Bloody inflammatory diarrhea, abdominal pain, nausea, vomiting, loss of appetite, family history, eye findings (e.g., episcleritis), perianal fistulae, fever, tenesmus, rectal bleeding, weight loss
      • Tests
        • Complete blood count, fecal leukocyte level, erythrocyte sedimentation rate, fecal calprotectin level
        • Characteristic intestinal ulcerations on colonoscopy
    • Irritable Bowel Syndrome
      • Clinical findings
        • Stool mucus, crampy abdominal pain, altered bowel habits, watery functional diarrhea after meals, exacerbated by emotional stress or eating
        • More common in women
      • Tests
        • All laboratory test results are normal
        • Increased fiber intake, exercise, dietary modification should be recommended
    • Ischemic colitis
      • Clinical findings
        • History of vascular disease; pain associated with eating
      • Tests
        • Colonoscopy, abdominal arteriography
    • Microscopic colitis
      • Clinical findings
        • Watery, secretory diarrhea affecting older persons
        • Nonsteroidal anti-inflammatory drug association possible
        • No response to fasting; nocturnal symptoms
      • Tests
        • Colon biopsy

Diarrhea without Fever Algorythm

  1. Diarrhea without fever
    1. Consider empiric metronidazole
  2. Giardia antigen test
    1. If positive -> treat
  3. Stool for cryptosporidium, cyclospora: acid fast stain or antigen test
    1. If positive -> treat
  4. Stool culture and Clostridium difficile antigen
    1. If positive -> treat
    2. Often enterotoxigenic Escherichia coli
    3. Treat per sensitivities or rifaximin for E. coli only
  5. Stool for ova and parasites x3
    1. Ignore nonpathogenic organisms
    2. If positive -> treat
  6. Selective serology: Stongyloides, Schistosoma
    1. If positive -> treat
  7. Evaluate for underlying pathology: post-infectious irritable bowel disease, celiac sprue, idiopathic inflammatory colitis, HIV test, treat for bacterial overgrowth

References:

  • FP Essentials 370

Travelors Diarrhea

  • Flouroquinolone or macrolide for 1-3 days
  • Loperamide

Reference:

  • AFP Vol 106 No 6 Dec 2022

Dietary Fats

Most people need to consume about 20 to 35 percent of their daily calories from fat. For the average person, that means 44 to 78 grams of fat.

9 calories of fat per gram 4 calories per gram for protein and carbohydrates

PUFA

PUFAs are unsaturated fats found in

  • nuts
  • seeds
  • vegetable oils, such as safflower, corn, sunflower, soy, and cottonseed

Best Sources of MUFA

You can find monounsaturated fats in these foods:

  • Almonds
  • Avocado
  • Dark chocolate
  • Hazelnuts
  • Macadamia nuts
  • Olives
  • Peanuts
  • Pecans
  • Pistachios
  • Pumpkin seeds
  • Sesame seeds
  • Squash
  • Sunflower seeds

Reference:

Diverticulitis

Clinical Recommendations

  • Avoiding popcorn, nuts, or seeds does not decrease the risk of diverticulitis or diverticular complications.SORT: B
  • Tobacco cessation, reduced meat intake, physical activity, and weight loss are recommended interventions to decrease the risks of diverticulitis recurrence. SORT C
  • Computed tomography of the abdomen and pelvis is the most appropriate initial imaging modality in the assessment of suspected complicated diverticulitis. SORT C
  • Selected patients with uncomplicated diverticulitis can be treated without antibiotics. SORT A
  • Imaging-guided percutaneous drainage is recommended for stable patients with abscesses ≥ 3 cm in size. SORT B
  • Prophylactic partial colectomy should be considered in patients who had an abscess requiring drainage. SORT B
  • Colonoscopy should be considered six to eight weeks after resolution of a complicated case of diverticulitis unless the patient has had a high-quality colonoscopy in the past year. SORT C

Outpatient Antibiotics:

  • Oral antibiotics should be considered for uncomplicated diverticuliis only if symptoms persist or worsen after 48 to 72 hours
  • Trimethoprim/sulfamethoxazole 160/800 mg bid + metronidazole 500 mg tid
  • Amox/clavulanate 875/125 mg XR bid
  • Ciprofloxacin 500 mg bid + metronidazole 500 mg tid
  • Moxifloxacin 400 mg qd
  • Levofloxacin 750 mg qd + metronidazole 500 mg 3-4/d

Reference:

  • AFP Aug 2022 Vol 106 No 2

Clinical Prediction Rule for Acute Diverticulitis

The presence of all three of the following indicators is considered a positive result: - Absence of vomiting - C-reactive protein level > 5 mg per dL (50 mg per L) - Tenderness limited to the left lower quadrant

References:

  • AFP Sep 2020 Vol 102 No 6

Dyspepsia

  • Patients <60yo with dyspepsia should be tested for H. pylori infection and treated if positive (LOE: A)
  • Patients <60yo with dyspepsia should be treated with PPI if H. pylori negative (LOE: A)

EGD Indications

  • >60yo
  • Bleeding, anemia, >10% weight loss, progressive dysphagia
  • History of cancer
  • History of PUD
  • Abdominal mass on exam

References:

  • FMX 2016
  • JAMA Vol 319 No 17 May 2018

Functional Dyspepsia

Herbal Medicines for Functional Dyspepsia

  • STW 5 (Iberogast), peppermint plus caraway oil, and turmeric (Curcuma longa) may be effective in improving symptoms of functional dyspepsia without significant adverse events.
  • Peppermint plus caraway oil and turmeric may also improve quality of life in patients with functional dyspepsia. (SOR: B, meta-analysis of low-quality randomized controlled trials [RCTs].)

Rome IV Diagnostic Criteria for Functional Dyspepsia

  • Presence of at least one of the following:
    • Postprandial fullness (3 days per week)
    • Early satiety (3 days per week)
    • Epigastric pain (1 day per week)
    • Epigastric burning (1 day per week)
  • and
    • No evidence of structural disease

Note: Criteria must be present for at least the past 3 months, with symptoms starting at least six months before diagnosis.

References:

  • AFP Vol 101 No 2 Jan 2020

Medications Associated with Dyspepsia

Medications Associated with Dyspepsia

  • Acarbose (Precose)
  • Antibiotics
  • Bisphosphonates
  • Corticosteroids
  • Herbs (e.g., chaste tree berry, feverfew, garlic, ginkgo, saw palmetto, white willow bark)
  • Iron
  • Metformin
  • Miglitol (Glyset)
  • Nonsteroidal anti-inflammatory drugs, including cyclooxygenase-2 inhibitors
  • Opiates
  • Orlistat (Xenical)
  • Potassium chloride
  • Theophylline

References:

  • AFP Vol 101 No 2 Jan 2020

Elevated Liver Transaminase Levels   edit

Causes of Elevated Liver Transaminase Levels

Hepatocellular damage releases ALT and AST. Elevations in ALT generally are more specific for liver injury, whereas elevations in AST can also be caused by extrahepatic disorders, such as thyroid disorders, celiac sprue, hemolysis, and muscle disorders.7 Normal ALT levels are defined as 29 to 33 IU per L (0.48 to 0.55 μkat per L) for males and 19 to 25 IU per L (0.32 to 0.42 μkat per L) for females.6 The AST:ALT ratio can suggest a specific disease or give insight into liver disease severity. In a study differentiating alcoholic liver disease from nonalcoholic liver disease, alcoholic liver disease was suggested with an AST:ALT ratio greater than 2 (mean AST:ALT values were 152:70; positive likelihood ratio [LR+] = 17, negative likelihood ratio [LR–] = 0.49). On the other hand, nonalcoholic fatty liver disease (NAFLD) was associated with a ratio of less than 1 (mean AST:ALT values were 66:91; LR+ = 80, LR– = 0.2).8 However, causes of mild, asymptomatic elevation of transaminase levels can generally be categorized as common, uncommon, and rare (Table 1).9

Situation Comments
Mildly elevated ALT level (less than 1.5 times normal) ALT value could be normal for gender, ethnicity or body mass index.
  Consider muscle injury or myopathy.
Alcoholic hepatitis Laboratory values can appear cholestatic, and symptoms can mimic cholecystitis.
  Minimal elevations of AST and ALT often occur.
AST level greater than 500 U per L The AST elevation is unlikely to result from alcohol intake alone.
  In a heavy drinker, consider acetaminophen toxicity.
Common bile duct stone Condition can simulate acute hepatitis
  AST and ALT become elevated immediately, but elevation of AP and GGT is delayed.
Isolated elevation of GGT level This situation may be induced by alcohol and aromatic medications, usually with no actual liver disease.
Isolated elevation of AP level (asymptomatic patient with normal GGT level) Consider bone growth or injury, or primary biliary cirrhosis.
  AP level rises in late pregnancy.
Isolated elevation of unconjugated bilirubin level Consider Gilbert syndrome or hemolysis.
Low albumin level Low albumin is most often caused by acute or chronic inflammation, urinary loss, severe malnutrition or liver disease; it is sometimes caused by gastrointestinal loss (e.g., colitis or some uncommon small bowel disease).
  Normal values are lower in pregnancy.
Blood ammonia level Blood ammonia values are not necessarily elevated in patients with hepatic encephalopathy.
  Determination of blood ammonia levels is most useful in patients with altered mental status of new onset or unknown origin.

Ref:

Flatus and Bloating

Here are medications that are over the counter that should help:

  1. simethicone 80 mg after meals and at bedtime
  2. alpha-galactosidase 600 units or 150 units (this is an enzyme and is in the product Beano) - Take 1-3 tablets or capsules with each meal
    • Alpha-D-galactosidase oral drops:
      • Take 5 drops/problem food right before your first bite. A typical meal has 3 servings of problem food.
    • Alpha-D-galactosidase oral tablet/capsule, chewable:
      • Chew or swallow whole 1 tablet/capsule per problem food right before your first bite. A typical meal has 3 servings of problem food.

References:

Flatus control

See also:

Table 67: Flatus Control
Treatment Symptom addressed Effectiveness
Rifaximin Volume 3+
Probiotcs - Prescript-Assist Volume 3+
Probiotics - Bifidobacterium Volume 3+
Probiotics - Lactobacillus Volume 3+
Activated Charcoal Oral Odor 0+
Activated Charcoal Briefs Odor 3+
Activated Charcoal Pads Odor 2+
Activated Charcoal Seat cushions Odor 1+
Bismuth subsalicylate Odor 3+
Alpha-galactosidase (Beano) Volume 1+ (300 GalU).
Alpha-galactosidase (Beano) Volume 2+ (1,200 GalU).
Simethicone/loperamide Volume associated with diarrhea 0+

Food Causes of flatus:

  • Grains, including:
    • Bagels, barley, breakfast cereals, granola, oat bran, pasta, rice bran, rye, sorghum grain, wheat bran, whole wheat flour, and whole grain breads
  • Vegetables, including:
    • Beets, broccoli, brussel sprouts, cabbage, cauliflower, corn, cucumbers, leeks, lettuce, onions, parsley, and sweet peppers
  • Beans, including:
    • Black-eyed peas, bog beans, broad beans, chickpeas, lentils, lima beans, mung beans, peanuts and peanut butter, pinto beans, red kidney beans, seed flour (sesame, sunflower), soybeans and soy milk.

Reference:

  • AFP Vol 79 No 12 Jun 2009

Food Allergies

Most Prevalent Food Allergens

  1. Cow's milk
  2. Peanuts
  3. Eggs
  4. Shellfish
  5. Tree nuts
  6. Fish
  7. Wheat
  8. Soy

References:

  • JFP Vol 69 No 7 Sep 2020

Food-Borne Illnesses   edit

  • Gastroenteritis (vomiting as primary symptom; fever and/or diarrhea also may be present)
    • Viral gastroenteritis
      • Most commonly rotavirus in infant or norovirus and other caliciviruses in older child or adult
      • Food poisoning due to preformed toxins
        • Vomitoxin
        • Staphylococcus aureus toxin
        • Bacillus cereus toxin
      • Heavy metals
  • Noninflammatory diarrhea (acute watery diarrhea without fever/dysentery; some may have fever)
    • Can be from all enteric pathogens (bacterial, viral, parasitic) - classically:
      • Enterotoxigenic Escherichia coli
      • Giardia
      • Vibrio cholerae
      • Enteric viruses
        • astroviruses
        • noroviruses and other caliciviruses
        • enteric adenovirus
        • rotavirus
      • Cryptosporidium
      • Cyclospora cayetanensis
  • Inflammatory diarrhea (invasive gastroenteritis; grossly bloody stool and fever may be present)
    • Shigella species
    • Campylobacter species
    • Salmonella species
    • Enteroinvasive E coli
    • E coli O157:H7
    • Vibrio parahaemolyticus
    • Yersinia enterocolitica
    • Entamoeba histolytica
  • Persistent diarrhea (lasting >14 days)
    • Parasites - particularly in travelors to mountainous or other areas where untreated water is consumed)
    • C cayetanensis
    • Cryptosporidium
    • E histolytica
    • Giardia lamblia
  • Neurologic manifestations (paresthesias, respiratory depression, bronchospasm, cranial nerve palsies)
    • Botulism (Clostridium botulinum toxin)
    • Organophosphate pesticides
    • Thallium poisoning
    • Scrombroid fish poisoning (histamine, saurine)
    • Ciguatera fish poisoning (ciguatoxin)
    • Tetradon fish poisoning (tetradotoxin)
    • Neurotoxic shellfish poisoning (brevitoxin)
    • Paralytic shellfish poisoning (saxitoxin)
    • Amnesic shellfish poisoning (domoic acid)
    • Mushroom poisoning
    • Guillain-Barre syndrome (associated with infectious diarrhea due to Campylobacter jejuni)
  • Systemic illness (fever, weakness, arthritis, jaundice)
    • Listeria monocytogenes
    • Brucella species
    • Trichinella spiralis
    • Toxoplasma gondii
    • Vibrio vulnificus
    • Hepatitis A and E viruses
    • Salmonella typhi and Salmonella paratyphi
    • Amebic liver abscess

References:

Foodborne Pathogens Associated with Fever and Vomiting

Fever

  • Characteristically associated:
    • Campylobacter jejuni
    • Shigella
    • Vibrio cholerae non-O1
  • Often associated
    • Norwalk virus
    • Salmonella
    • Vibrio parahaemolyticus

Vomiting

  • Characteristically associated:
    • Bacillus cereus (emetic syndrome)
    • Norwalk virus
    • Staphylococcus aureus
  • Often associated
    • Clostridium botulinum
    • V. cholerae O1
    • V. parahaemolyticus

Reference:

  • Am Fam Physician. 2015;92(5):358-365

Gall bladder Diet   edit

In general, avoid foods high in fat and increase plant based foods. Here are some safe options for low-fat proteins, fiber, and unsaturated (healthy) fats.

Low-fat protein foods include:

  • poultry
  • fish
  • zero fat dairy products
  • nuts and seeds
  • soy and soy products
  • legumes, such as beans and lentils
  • dairy alternatives, such as soy milk

Sources of fiber include:

  • fruits
  • vegetables
  • legumes
  • nuts and seeds
  • whole grains

Unsaturated fat sources include:

  • cold-water fish
  • nuts, such as walnuts
  • seeds, such as flaxseed
  • oils from fish or flaxseed

Gastroesophageal Reflux Disease (GERD)

See also:

PPI Equivalence

Drug Omeprazole equivalent
Pantoprazole 20 mg 4.5 mg
Lansoprazole 15 mg 13.5 mg
Omeprazole 20 mg 20 mg
Esomeprazole 20 mg 32 mg
Rabeprazole 20 mg 36 mg

Typical GERD

  • Clinical Presentation
    • Recurrent heartburn and acid regurgitation
    • Chest pain
    • Esophagitis
    • Peptic strictures
    • Barrett esophagus
  • Treatment
    • Lifestyle modification
      • Weight loss, smoking cessation, and elevation of head of bed
    • PPI treatment daily for 4-8 wks
      • If poor response, consider altering dosage, timing, or initiating twice a day
      • If adequate response, change to PPI as needed
    • Antireflux surgery can be considered
  • Followup
    • If good PPI response - lower or stop dose
    • If esophagitis or Barretts, continue PPI at lowest dose tolerated
    • If treatment failure or alarm symptoms, urgent endoscopy
    • If no response to PPI, esophageal manometry and endoscopy to assess esophageal motor disorders and lower esophageal sphincter function
    • If no response to PPI, continue pH monitoring and perform endoscopy to confirm pathologic pH exposure

Extraesophageal GERD

  • Clinical Presentation
    • Hoarseness
    • Wheezing
    • Chronic cough
    • Asthma
    • Chronic laryngitis
    • Teeth erosions
    • Dyspepsia
    • Belching
    • Bloating
  • Treatment
    • PPI treatment daily for 8 wks for patients with concomitant typical GERD
      • If adequate response, change to PPI as needed
    • Antireflux surgery should not be considered for patients who do not respond to PPI treatment
    • Antireflux surgery can be considered for patients who cannot tolerate PPI treatment
  • Followup
    • If good PPI response - lower or stop dose
    • If suspected extraesophageal symptoms persist with no typical GERD symptoms, pH monitoring should be considered
    • If no response to PPI, consider further diagnostics
    • If treatment failure or alarm symptoms, urgent endoscopy

References:

  • JAMA Dec 2020 Vol 324 No 24

PPI's and Depression

Study examined the association between use of PPIs and depressive symptoms in an elderly population.

  • 344 inhabitants of Tuscania (Italy) aged 75 years and over
  • Use of PPIs was associated with a higher Geriatric Depression Scale (GDS) score in linear regression analysis (B = 2.43; 95% CI = 0.49-4.38; p = 0.014)
  • Use of PPIs was associated with increased adjusted probability of depression in logistic regression (OR = 2.38; 95% CI = 1.02-5.58; p = 0.045).
  • Higher PPIs dosages were associated with increased probability of depression (p for trend = 0.014).
  • This association was independent of the diagnosis of peptic disease, as well as the use of antidepressant medications.
  • No association was found between use of H2-blockers or antacids and the GDS score.

Calculation of the population attributable risk indicated that 14% of depression cases could be avoided by withdrawal of PPIs.

Mood should be routinely assessed in elderly patients on PPIs.

Reference:

  • Laudisio A, Antonelli Incalzi R, Gemma A, Giovannini S, Lo Monaco MR, Vetrano DL, Padua L, Bernabei R, Zuccalà G. Use of proton-pump inhibitors is associated with depression: a population-based study. Int Psychogeriatr. 2018 Jan;30(1):153-159. doi: 10.1017/S1041610217001715. Epub 2017 Sep 13. PMID: 28899441.

Reflux Conservative Management

Ways to stop your reflux:

  1. Stop all caffeine, chocolate, alcohol, nicotine
  2. Elevate the head of the bed (do not use multiple pillows)
  3. Eat smaller meals more frequently
  4. Do not eat within 3 hours of going to bed
  5. Avoid wearing tight garments
  6. Follow these food rules:
Avoid Enjoy
Alcohol Fresh vegetables
Barbecue sauces Meat
Caffeine Milk
Carbonated beverages Poultry
Chocolate Seafood
Citrus fruits